This advisory circular (AC) provides guidance for the installation and airworthiness approval of Automatic Dependent Surveillance – Broadcast (ADS-B) Out systems in aircraft.

David W. Hempe
Manager, Aircraft Engineering Division
Table of Contents

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. General Information</td>
<td>1</td>
</tr>
<tr>
<td>1-1. Purpose of This Advisory Circular (AC).</td>
<td>1</td>
</tr>
<tr>
<td>1-2. Who This AC Applies to.</td>
<td>1</td>
</tr>
<tr>
<td>1-3. Where to Find This Advisory Circular.</td>
<td>1</td>
</tr>
<tr>
<td>1-4. Scope.</td>
<td>1</td>
</tr>
<tr>
<td>1-5. Background.</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2. The Approval Process & Necessary Documentation</td>
<td>3</td>
</tr>
<tr>
<td>2-1. ADS-B System Approval Process.</td>
<td>3</td>
</tr>
<tr>
<td>2-3. Continuing Airworthiness Requirements.</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 3. ADS-B System Installation Guidance</td>
<td>6</td>
</tr>
<tr>
<td>3-1. General Installation Guidance.</td>
<td>6</td>
</tr>
<tr>
<td>3-2. ADS-B Equipment.</td>
<td>9</td>
</tr>
<tr>
<td>3-3. Position Source.</td>
<td>11</td>
</tr>
<tr>
<td>3-4. Barometric Altitude Source.</td>
<td>15</td>
</tr>
<tr>
<td>3-5. Heading Source.</td>
<td>16</td>
</tr>
<tr>
<td>3-6. TCAS Status Source.</td>
<td>16</td>
</tr>
<tr>
<td>3-7. Pilot Interface.</td>
<td>17</td>
</tr>
<tr>
<td>3-8. ADS-B Antenna Interface.</td>
<td>20</td>
</tr>
<tr>
<td>3-9. Vertical Rate Source.</td>
<td>22</td>
</tr>
<tr>
<td>3-10. Air-Ground Considerations.</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 4. Test & Evaluation</td>
<td>25</td>
</tr>
<tr>
<td>4-1. Ground Test.</td>
<td>25</td>
</tr>
<tr>
<td>4-2. Flight Test.</td>
<td>29</td>
</tr>
<tr>
<td>4-3. In-Flight Test with FAA Ground System.</td>
<td>29</td>
</tr>
<tr>
<td>4-4. International Flight Test Options.</td>
<td>32</td>
</tr>
<tr>
<td>Appendix 1. Message Elements Descriptions</td>
<td>A1-1</td>
</tr>
<tr>
<td>Appendix 2. Identifying ADS-B Position Sources</td>
<td>A2-1</td>
</tr>
<tr>
<td>Appendix 3. Latency Analysis</td>
<td>A3-1</td>
</tr>
<tr>
<td>Appendix 4. Flight Manual Supplement Example</td>
<td>A4-1</td>
</tr>
<tr>
<td>Appendix 5. Definitions and Acronyms</td>
<td>A5-1</td>
</tr>
<tr>
<td>Appendix 6. Related Documents</td>
<td>A6-1</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Functional Overview of ADS-B Out System</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Emitter Category</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Minimum and Maximum Transmitted Power from TSO-C166b</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Minimum and Maximum Transmitted Power from TSO-C154c</td>
<td>28</td>
</tr>
<tr>
<td>Figure 5</td>
<td>NIC Values</td>
<td>A1-1</td>
</tr>
<tr>
<td>Figure 6</td>
<td>NACP Values</td>
<td>A1-2</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Probability of Exceeding the NIC Containment Radius</td>
<td>A1-2</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Source Integrity Level Supplement Table</td>
<td>A1-3</td>
</tr>
<tr>
<td>Figure 9</td>
<td>System Design Assurance Table</td>
<td>A1-4</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Estimated GNSS Availabilities (Minimum Threshold Constellation)</td>
<td>A2-3</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Latency Analysis Example</td>
<td>A3-5</td>
</tr>
</tbody>
</table>
Chapter 1. General Information

1-1. Purpose of This Advisory Circular (AC).

a. This AC provides guidance for the initial installation and airworthiness approval of Automatic Dependent Surveillance - Broadcast (ADS-B) Out equipment in aircraft.

b. This AC is not mandatory and does not constitute a regulation. This AC describes an acceptable means, but not the only means, to install ADS-B Out equipment. However, if you use the means described in this AC, you must follow it entirely.

c. This AC is primarily intended for installations compliant with the aircraft requirements of 14 CFR § 91.227. Airworthiness compliance will be evaluated based on the applicable intended function rule (e.g., 14 CFR §§ 23.1301, 25.1301, 27.1301, 29.1301) recognizing that the intended function is to meet the equipment requirements in 14 CFR § 91.227. It is possible to receive airworthiness approval for your ADS-B Out system with a different intended function, however we strongly discourage this type of installation unless the installation is in accordance with the criteria for ADS-B Out in foreign non-radar airspace (e.g., Approved Means of Compliance (AMC) 20-24). Applicants using this AC to install ADS-B systems that are not compliant with 14 CFR § 91.227 must follow all aspects of this AC and propose alternate means as appropriate to the FAA.

1-2. Who This AC Applies to. This AC is for anyone who is applying for an initial type certificate (TC), supplemental type certificate (STC), an amended TC, or an amended STC for the installation and continued airworthiness of ADS-B Out equipment.

1-3. Where to Find This Advisory Circular. You can find this AC on the Federal Aviation Administration’s (FAA’s) website at www.faa.gov/regulations_policies/advisory_circulars/.

1-4. Scope. This AC only addresses the initial installation of ADS-B Out systems. Installation guidance for ADS-B In, including FIS-B, will be developed separately. If the TSO-C166b or TSO-C154c equipment that is being installed has a receive capability, but that receive capability is not integrated into the aircraft to support ADS-B In display applications, you do not need to demonstrate specific ADS-B receive performance during the ADS-B Out installation approval.

1-5. Background.

a. ADS-B is a next generation surveillance technology incorporating both air and ground aspects that provide air traffic control (ATC) with a more accurate picture of the aircraft’s three-dimensional position in the en route, terminal, approach and surface environments. The aircraft provides the airborne portion in the form of a broadcast of its identification, position, altitude, velocity, and other information. The ground portion is comprised of ADS-B ground stations which receive these broadcasts and direct them to ATC automation systems for presentation on a controller’s display. In addition, aircraft equipped with ADS-B In capability can also receive these broadcasts and display the information to improve the pilot’s situation awareness of other traffic.
b. ADS-B is automatic because no external interrogation is required. It is dependent because it relies on onboard position sources and broadcast transmission systems to provide surveillance information to ATC, and other users. Figure 1 provides a functional overview of an aircraft ADS-B system.

Figure 1. Functional Overview of ADS-B Out System.

Note: Heading is an optional interface. Traffic Alert and Collision Avoidance System (TCAS) status is only required for aircraft equipped with TCAS II.

c. **ADS-B In and ADS-B Out.** ADS-B Out refers to an aircraft broadcasting own-ship information. ADS-B In refers to an aircraft’s ability to receive ADS-B information, such as ADS-B messages from other aircraft or Traffic Information Services-Broadcast (TIS-B), Automatic Dependent Surveillance - Rebroadcast (ADS-R), and Flight Information Services Broadcast (FIS-B) from the ground infrastructure.

Note: FIS-B is only available on the UAT link.

d. **Links.** There are two ADS-B link options, 1090 extended squitter (1090ES) and universal access transceiver (UAT.) The 1090ES equipment operates on 1090 MHz and has performance requirements specified in TSO-C166b. The UAT operates on 978 MHz and has performance requirements specified in TSO-C154c. This AC addresses installing equipment meeting the requirements of either TSO.

Note: 14 CFR § 91.225 requires 1090ES in Class A airspace.
Chapter 2. The Approval Process & Necessary Documentation

2-1. ADS-B System Approval Process.

a. This AC addresses the initial airworthiness approval through the type certification or supplemental type certification process of an ADS-B Out system that meets the equipment requirements of 14 CFR § 91.227. Information on the STC and TC process can be found in the latest revisions of AC 21-40, Guide for Obtaining a Supplemental Type Certificate and Order 8110.4, Type Certification.

b. This AC covers installation of the ADS-B equipment, updates to the flight manual, updates to the instructions for continued airworthiness, guidance for interfacing systems, ground test, and flight test.

c. ADS-B Out System Components. The ADS-B system is depicted in figure 1 and includes the ADS-B equipment, a position source, a barometric altitude source, an air-ground status source, a TCAS II source if the aircraft is equipped with TCAS II, an optional heading source, and all associated antennas and displays. Specifically list the components that make up the ADS-B system on the master drawing list. You may demonstrate interoperability with multiple components for a given function. For example, you may request approval for a secondary position source, or add multiple unique position sources to the STC.

2-2. Airplane Flight Manual (AFM). Include ADS-B Out operating limitations, normal operating procedures, and system description in the airplane flight manual (AFM), rotorcraft flight manual (RFM), AFM supplement (AFMS), or RFM supplement (RFMS). Appendix 4 provides a sample flight manual supplement. The flight manual should also indicate if that installation meets the equipment requirements of 14 CFR § 91.227. This can be accomplished by adding the following statement to the General or Normal Procedures section of the flight manual:

“The installed ADS-B Out system has been shown to meet the equipment requirements of 14 CFR § 91.227.”

a. Operating Limitations. The flight manual should describe any operating limitations as specified by the equipment manufacturer or as a result of installation considerations.

(1) Describe any actions expected of the pilot.

(2) Describe how to enter the Mode 3/A code, operate the IDENT function, and activate or deactivate emergency status. If the ADS-B system and transponder do not have a single point of entry for the Mode 3/A code, IDENT, and emergency status, then the flight manual procedures must ensure conflicting information is not transmitted from the ADS-B system and transponder.
(3) Describe any ADS-B Out displays and provide instructions to the pilot on how to respond to any error conditions.

(4) Describe how the ADS-B Out system can be disabled, if there is an ability to disable the ADS-B system, and the means through which the pilot can detect that the system has been disabled. The flight manual must address the ramifications of turning off the ADS-B Out system, including the ramifications to the transponder and TCAS II if disabling the ADS-B Out system also disables the transponder or the TCAS II.

(5) Include guidance in the flight manual on when to enable the ADS-B system. The ADS-B system must be enabled (turned ON) during all phases of flight operation including airport surface movement operations. ADS-B In surface applications and ATC surface surveillance will use ADS-B broadcasts, thus it is important for aircraft ADS-B Out systems to continue to transmit on the airport surface. If the ADS-B function is embedded in a Mode S transponder, the flight manual, checklists, and any operator procedures manuals must be updated accordingly with ADS-B operations guidance.

Note: Historically, transponders have been turned on by the flight crew when entering the runway for takeoff and turned off or to standby when exiting the runway after landing. When ADS-B is integrated into a Mode S transponder the existing guidance for transponder operation must be updated to ensure the ADS-B is operating during airport surface movement operations.

c. System Description. Describe the ADS-B Out system and the interface with other systems on the aircraft in the flight manual.

a. ADS-B Out Equipment. Follow the ADS-B equipment manufacturer’s guidance for periodic inspection and maintenance of the ADS-B system. Instructions for continued airworthiness (ICAW) must be provided and must address any maintenance requirements to maintain the ADS-B equipment.

b. ADS-B Functionality in a Transponder. Transponders which incorporate ADS-B functionality (such as with 1090ES) must continue to meet the operational requirements of 14 CFR §§ 91.413, 91.215, and 91.217 and comply with the transponder system tests and inspections called out in 14 CFR part 43, appendix F. See AC 43-6, Altitude Reporting Equipment and Transponder System Maintenance and Inspection Practices.

c. Altimetry Systems and Altitude Reporting Equipment. Altitude reporting equipment connected to the ADS-B system must comply with all applicable 14 CFR §§ 91.217, 91.411, and part 43 appendix E test and inspection requirements. See AC 43-6. If the altimetry system is compliant with the reduced vertical separation minimum (RVSM) standards, the
requirements and tolerances stated in the approved RVSM maintenance program must be met. ADS-B installation does not alter these requirements.

d. **Maintenance and Design Changes to Interfacing Components.** The ADS-B system interfaces with multiple external components, such as position sources and altimetry sources. It is important that any future maintenance or design changes to these interfacing components be accomplished in such a way that continued satisfactory performance of the overall ADS-B system is maintained.

1. **Maintenance to interfacing components.** The applicant must update each interfacing component’s instructions for continued airworthiness (ICAW) with procedures that ensure the appropriate interfacing component verification and/or ADS-B system verification is accomplished after maintenance to the interfacing component.

 Note: An ADS-B system check is not necessarily required after maintenance is performed on an interfacing system if the post maintenance check of the interfacing system validates the output which is interfaced to the ADS-B equipment.

2. **Design changes to interfacing components.** Ensuring continued airworthiness of the ADS-B system following upgrades of interfacing components could be problematic if the installer of the ADS-B system is unaware of design changes to interfacing components, or if the installer of the updated interfacing component is unaware of a potential impact to the ADS-B system. To avoid this problem, the ADS-B system installer must update the ICAW for each interfacing system with a process that ensures continued airworthiness of the ADS-B system following design changes to the interfacing component.
Chapter 3. ADS-B System Installation Guidance

3-1. General Installation Guidance.

a. Environmental Qualification. Ensure the environmental qualification of the installed equipment is appropriate for the aircraft in accordance with AC 21-16(), RTCA/DO-160 Versions D, E, and F, “Environmental Conditions and Test Procedures for Airborne Equipment.”

b. System Safety Assessment. The ADS-B System Design Assurance (SDA) parameter indicates the probability of an ADS-B system malfunction causing false or misleading position information or position quality metrics to be transmitted. SDA may be preset at installation for systems that do not utilize multiple position sources with different design assurance levels, otherwise the system must be capable of adjusting the SDA broadcast parameter to match the position source being employed at the time of transmission.

(1) Compliant architecture. ADS-B equipment meeting the minimum performance requirements of TSO-C166b or TSO-C154c that is directly connected to a position source meeting the minimum performance requirements of any revision of TSO-C129, TSO-C145, TSO-C146, or TSO-C196 may set the SDA = 2 without further analysis. For installations in aircraft with more complex system architectures, a system safety assessment, as described below, is required to set the SDA.

(2) Conducting the system safety assessment. ADS-B systems using position sources not listed in paragraph 3-1 b (1) or systems with intermediary devices such as data concentrators must accomplish a system safety assessment and set the SDA according to the results of the assessment. Systems integrated through a highly integrated data bus architecture must complete the system safety assessment. The system safety assessment must demonstrate that the installed system meets all TSO-C166b or TSO-C154c requirements to set the SDA = 2 or 3. This can be accomplished using the methods, for example, as described in AC 25.1309-1(), Systems Design and Analysis, AC 23.1309-1(), System Safety Analysis and Assessment for Part 23 Airplanes, SAE ARP 4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, or SAE ARP 4754, Certification Considerations for Highly-Integrated or Complex Aircraft Systems.

Note: Although the direct effects to your aircraft of an ADS-B failure may be minor, the ADS-B information will be used by other ADS-B equipped aircraft and by ATC, thus the provisions in AC 23.1309-1() that allow reduction in failure probabilities and design assurance level for aircraft under 6,000 pounds do not apply to the ADS-B system.

(3) If the system contains different design assurance levels for hardware and software, then the worst case design assurance level should be used. For example, if the hardware assurance level is level C, and the software assurance level is B, the SDA would indicate that the system has been qualified commensurate with a Major failure condition.
c. **Position and Velocity Latency.** Latency is the difference between the time a measurement is taken to determine the aircraft’s geometric position and the time when that position measurement is transmitted by the aircraft’s ADS-B equipment. Limiting the latency in ADS-B systems minimizes the errors in the reported position. TSO-C166b and TSO-C154c ADS-B equipment typically compensate for latency by extrapolating the position based on velocity information. All applicants must demonstrate compliance with the latency requirements in paragraph 3-1 c (1). This can be done by equipping with a compliant architecture listed in paragraph 3-1 c (2) or performing an analysis detailed in paragraph 3-1 c (3). Latency terms are further defined in appendix 3 of this AC.

Note: To demonstrate compliance with 14 CFR § 91.227 you must calculate latency from the position source time of measurement. Do not calculate latency from the position source time of applicability, as defined in DO-260B and DO-282B.

(1) **Position and Velocity Latency Requirements.** There are two position and velocity latency requirements associated with ADS-B Out.

(a) **Total latency.** Total latency is defined as the difference between the time when the position is measured and when the position is transmitted from the aircraft. In order to meet 14 CFR § 91.227, the total latency must be less than or equal to 2.0 seconds.

(b) **Uncompensated latency.** Uncompensated latency is the difference between the time of applicability for the transmitted position and the actual time the position is transmitted from the ADS-B system. In order to meet 14 CFR § 91.227, the uncompensated latency must be less than or equal to 0.6 seconds. The aircraft must compensate for any latency above 0.6 seconds.

Note: RTCA Special Committee 186 recommends ADS-B Out systems transmit position information with an uncompensated latency of less than or equal to 0.4 seconds. This recommendation is to support future ADS-B In applications. The 14 CFR § 91.227 latency requirements support ATC separation services and the initial basic ADS-B In applications, however we encourage you to minimize uncompensated latency as much as possible in your installation. Recommendations for minimizing latency are included in appendix 3 of this AC.

(2) **Compliant Architecture.** ADS-B systems which directly connect a position source meeting the minimum performance requirements of any revision of TSO-C145, TSO-C146, or TSO-C196 with ADS-B equipment meeting the minimum performance requirements of TSO-C166b or TSO-C154c meet the total latency and uncompensated latency requirements. Systems with a compliant architecture do not need to accomplish a position and velocity latency analysis.
(3) **Position and Velocity Latency Analysis.** If you are installing an ADS-B system that does not have a compliant architecture described in paragraph 3-1 c (2), you must accomplish a latency analysis to demonstrate that the installed ADS-B system meets the total latency and uncompensated latency requirements. Systems integrated through a highly integrated data bus architecture must complete the latency analysis. Appendix 3 of this AC provides for an acceptable method to complete the latency analysis.

d. **Integrity Metric Latency.** There is an allowance for Global Navigation Satellite System (GNSS) position sources to delay the update of the integrity containment radius while attempting to detect and exclude faulted satellites. Thus 14 CFR § 91.227 allows up to 12 seconds for the ADS-B system to transmit a change in the Navigation Integrity Category (NIC). This 12 second allowance is available for any position source, not just GNSS position sources. The 12 seconds includes both the time for the position source to detect the fault and time for the ADS-B system to transmit the fault indication. The requirement to indicate a change in NIC applies to the time between when a faulted position is first transmitted and when the updated NIC is transmitted indicating the fault. The total time to update the NIC is based on the cumulative effect of: (1) the position source fault detection and exclusion time; and (2) the worst-case asynchronous transmission difference between when the faulted position is transmitted and when the NIC indicating the fault is transmitted.

(1) **Compliant Architecture.** ADS-B equipment meeting the minimum performance requirements of TSO-C166b or TSO-C154c that are directly connected to a position source meeting the minimum performance requirements of any revision of TSO-C145, TSO-C146, or TSO-C196 will typically meet the integrity latency requirements. For these systems you only need to demonstrate, through analysis, that a non-isolated GNSS satellite fault detected by the position source is properly passed to the ADS-B equipment and that the ADS-B equipment indicates an invalid position by transmitting the position integrity and accuracy metrics equal to zero.

 Note: ARINC Interface Specification 743A allows flexibility in how information is transferred during a GNSS satellite fault, thus it is necessary to ensure a non-isolated satellite failure results in the ADS-B indicating an invalid position.

(2) **Integrity Metric Latency Analysis.** If you are installing an ADS-B system that does not have a compliant architecture described above, you must accomplish a latency analysis to demonstrate that the ADS-B system meets the integrity metric latency requirements. The latency analysis should include the maximum time for a position source to indicate an integrity fault, any delay added by an intermediary device such as a data concentrator, and the delay added by the ADS-B equipment.

e. **System Design Assurance (SDA) and Source Integrity Level (SIL) Latency.** 14 CFR § 91.227 requires changes in the SDA or SIL be broadcast within 10 seconds. Changes in the SDA or SIL will typically only occur when a secondary position source is integrated into an ADS-B system and that secondary position source has a different SDA or SIL than the primary position source. If you integrate multiple position sources with different SDAs or SILs,
demonstrate during ground testing that a change in position source results in an updated SDA and SIL within 10 seconds.

f. Populating Message Elements. 14 CFR § 91.227 lists parameters that must be populated (i.e. not a null value) for operation in airspace defined by 14 CFR § 91.225. All parameters transmitted by the ADS-B system must conform to the standards in TSO-C166b or TSO-C154c and may not contain false or misleading information.

3-2. ADS-B Equipment.

a. Equipment Eligibility. ADS-B equipment must meet the requirements specified in TSO-C166b or TSO-C154c.

b. Installation Guidance.

(1) UAT Systems with Mode S Transponders. Do not install a UAT ADS-B Out system which has the capability to transmit a random 24-bit address in an aircraft which also has a Mode S transponder unless the random 24-bit feature is disabled. The ATC automation system would interpret the different 24-bit addresses as two separate aircraft, and alert controllers to a conflict that does not actually exist.

(2) Mixed Transmit/Receive Classifications. TSO-C166b and TSO-C154c allow Class A transmit-only and Class A receive-only equipment configurations. There are no restrictions for installing a certain class of receive equipment with a different class of transmit equipment. For example, a Class A3 transmit-only unit can be used in the same aircraft with a Class A1 receive-only unit. It is also acceptable to have a TSO-C166b transmitter and a TSO-C154c receiver and vice versa.

(3) Stand Alone 1090ES Transmitters. RTCA/DO-260B, paragraph 2.2.2.2 only allows Class A0 and B0 1090ES stand-alone (not integrated with a transponder) transmitters. This AC does not cover installation approval for class A0 or B0 1090ES transmitters because they are not compliant with 14 CFR § 91.227.

(4) Multiple ADS-B Out Systems. If the aircraft has ability to operate a 1090ES and a UAT ADS-B Out system at the same time, the systems must have a single point of entry for the emergency code, IDENT, and Mode 3/A code. Neither system may use a random address feature. If dual ADS-B Out systems of the same link are installed (e.g. to increase dispatch reliability), the installation must preclude operation of both systems simultaneously.

Note 1: We recommend that you do not install both 1090ES and UAT ADS-B Out capability on the same aircraft.

Note 2: Installation of dual 1090ES and UAT ADS-B In capability is acceptable.
c. **Configuration of Associated Parameters.** The following paragraphs provide additional guidance on setting key ADS-B Out parameters. Definitions for each of the following associated parameters are included in appendix 1.

(1) **ICAO 24-bit Address.** You must set the ICAO 24-bit address during installation in accordance with the ADS-B equipment manufacturer’s instructions. For U.S. civil aircraft, the ICAO 24-bit address is established as a function of the aircraft’s registration or “N” number. You can determine the appropriate address for U.S. registered aircraft on the following FAA website: http://registry.faa.gov/aircraftinquiry/.

Note 1: The ICAO 24-bit address is also used by the Mode S transponder. For the addition of ADS-B (1090ES) in an existing Mode S transponder installation, verify that the ICAO 24-bit address decodes to the current aircraft registration number.

Note 2: The ICAO 24-bit address will have to be updated if the aircraft’s registration number changes.

(2) **Aircraft Length and Width.** This parameter must be configured during installation. Do not set the length and width parameter to a value of “0”, as the length width code is required by 14 CFR § 91.227.

(3) **ADS-B In Capability.** This parameter must be configured to indicate if the aircraft has an ADS-B In system installed. For ease of installation, the parameter does not have to indicate the operational status of the ADS-B In system. If the aircraft has both 1090ES and UAT ADS-B In systems installed, both the 1090ES ADS-B In and UAT ADS-B In capability should be set accordingly.

(4) **Selected Heading and Altitude.** Selected heading and selected altitude are optional parameters. The current standards are not adequate to ensure a consistent application of these parameters. We recommend that these optional parameters not be populated until the standards are updated. However, if an ADS-B equipment manufacturer provides installation guidance, it is acceptable to follow that guidance.

(5) **Emitter Category.** Figure 2, Emitter Category, provides guidance on setting the emitter category.
Figure 2. Emitter Category

<table>
<thead>
<tr>
<th>Emitter Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Emitter Category</td>
<td>Do not use this emitter category. If no emitter category fits your installation, seek guidance from the FAA as appropriate.</td>
</tr>
<tr>
<td>Light Airplane < 15,500 pounds</td>
<td>Any airplane with a maximum takeoff weight less than 15,500 pounds. This includes very light aircraft (light sport aircraft) that do not meet the requirements of 14 CFR § 103.1.</td>
</tr>
<tr>
<td>Small Airplane ≥ 15,500 to < 75,000 pounds</td>
<td>Any airplane with a maximum takeoff weight greater than or equal to 15,500 pounds but less than 75,000 pounds.</td>
</tr>
<tr>
<td>Large Airplane ≥ 75,000 to < 300,000 pounds</td>
<td>Any airplane with a maximum takeoff weight greater than or equal to 75,000 pounds but less than 300,000 pounds that does not qualify for the high vortex category.</td>
</tr>
<tr>
<td>Large Airplane with High Vortex</td>
<td>Any airplane with a maximum takeoff weight greater than or equal to 75,000 pounds but less than 300,000 pounds that has been determined to generate a high wake vortex. Currently, the Boeing 757 is the only example.</td>
</tr>
<tr>
<td>Heavy Airplane ≥ 300,000 pounds</td>
<td>Any airplane with a maximum takeoff weight equal to or above 300,000 pounds.</td>
</tr>
<tr>
<td>Highly Maneuverable > 5 G and > 400 TAS</td>
<td>Any airplane, regardless of weight, which can maneuver in excess of 5 G’s and maintain true airspeed above 400 knots.</td>
</tr>
<tr>
<td>Rotorcraft</td>
<td>Any rotorcraft regardless of weight.</td>
</tr>
<tr>
<td>Glider / Sailplane</td>
<td>Any glider or sailplane regardless of weight.</td>
</tr>
<tr>
<td>Lighter than Air</td>
<td>Any lighter than air (airship or balloon) regardless of weight.</td>
</tr>
<tr>
<td>UAV</td>
<td>Any unmanned aerial vehicle or unmanned aircraft system regardless of weight.</td>
</tr>
<tr>
<td>Ultralight Vehicle</td>
<td>A vehicle that meets the requirements of 14 CFR § 103.1. Light sport aircraft should not use the ultralight emitter category unless they meet 14 CFR § 103.1.</td>
</tr>
</tbody>
</table>

3-3. Position Source.

a. Equipment Eligibility. 14 CFR § 91.227 is performance-based and does not require any specific position source. There are no unique minimum standards for position sources supporting ADS-B. The existing navigation equipment and airworthiness standards should be used, however they must be augmented to address the unique issues associated with ADS-B. A TSO authorization alone is not sufficient to ensure ADS-B compatibility. The position source must also comply with the appendix 2 minimum performance requirements. Compliance with the appendix 2 requirements may be documented in the position source manufacturer’s installation instructions.

Note: Not all GNSS position sources will provide the same availability. See appendix 2 for more information on GNSS availability. The FAA recommends TSO-C145 or TSO-C146 position sources that meet the appendix 2 requirements to
maximize availability and ensure access to the airspace identified in 14 CFR § 91.227 after January 1, 2020.

b. Installation Guidance.

(1) The position source must be installed in accordance with the applicable guidance. All GNSS position sources must be installed in accordance with AC 20-138(), Airworthiness Approval of Global Navigation Satellite System (GNSS) Equipment.

(2) Unless the ADS-B equipment manufacturer has analyzed the interface between the position source and the ADS-B equipment you are installing, and specifically listed the position source in the ADS-B equipment’s installation manual, you must provide an analysis of the interface between the position source and the ADS-B equipment which demonstrates that the position, velocity, position accuracy, position integrity, and velocity accuracy information taken from the position source is properly interpreted by the ADS-B equipment.

Note: This analysis will require engineering design data from the ADS-B equipment manufacturer and the position source manufacturer.

(3) Secondary Position Source. There is no requirement to have a secondary position source input. However, if you interface a secondary position source to the ADS-B system, it must meet the requirements in appendix 2.

Note: If a position source is unable to provide 14 CFR § 91.227 accuracy and integrity values it will not qualify the aircraft to operate in airspace defined by 14 CFR § 91.225 after January 1, 2020.

(4) Position Source Selection. If multiple position sources are interfaced to the ADS-B equipment, source selection can be accomplished manually by the pilot, automatically by the aircraft’s navigation system, or by the ADS-B equipment. We discourage automatic selection of the ADS-B position source based solely on the navigation source in use because operational requirements sometimes dictate a navigation source that may not provide the best ADS-B performance. If the ADS-B equipment accomplishes the position source selection, it should do so in accordance with TSO-C166b or TSO-C154c. If multiple sources are interfaced to the ADS-B, there must be a means for the flight crew to readily determine which source is selected.

Note: TSO-C166b and TSO-C154c require the ADS-B equipment to use a single position source for the latitude, longitude, horizontal velocity, and accuracy metrics, and integrity metrics.

(5) The ADS-B position source does not need to be the same position source used for navigation. It is acceptable for a global navigation satellite system (GNSS) position source to be embedded in the ADS-B equipment and provide position information to the ADS-B without
providing any navigation information to other on-board systems. As addressed in appendix 2, an integrated GNSS position source should still meet the requirements of TSO-C145, TSO-C146, or TSO-C196.

c. Configuration of Associated Parameters. The following paragraphs provide additional guidance on setting key ADS-B Out parameters. Definitions for each of the following associated parameters are included in appendix 1.

(1) Latitude and Longitude. The ADS-B equipment must set the latitude and longitude based on the real-time position information provided by the position source.

(2) Horizontal Velocity. The ADS-B equipment must set the horizontal velocity based on the real-time velocity information provided by the position source. The ADS-B equipment must transmit a north/south east/west velocity while airborne and a combination of ground speed and ground track or heading while on the surface. Ensure the position source provides horizontal velocity in both formats or ensure the ADS-B equipment can properly convert between formats. We recommend transmitting heading instead of ground track while on the surface, see paragraph 3-5 c for additional information on interfacing heading.

(3) Source Integrity Level (SIL). SIL is typically a static (unchanging) value and may be set at the time of installation if a single type of position source is integrated with the ADS-B system. SIL is based solely on the position source’s probability of exceeding the reported integrity value and should be set based on design data from the position source equipment manufacturer. Installations which derive SIL from GNSS position sources compliant with any revision of TSO-C129, TSO-C145, TSO-C146, or TSO-C196 which output horizontal protection level (HPL) or horizontal integrity level (HIL) should set the SIL = 3 because HPL and HIL are based on a probability of 1x10^-7 per hour. Do not base NIC or SIL on horizontal uncertainty level (HUL) information.

(4) Source Integrity Level Supplement (SIL_SUPP). SIL_SUPP is based on whether the position source probability of exceeding the reported integrity value is calculated on a per hour or per sample basis and should be set based on design data from the position source equipment manufacturer. ADS-B systems interfaced with a GNSS position source compliant with any revision of TSO-C129, TSO-C145, TSO-C146, or TSO-C196 may preset SIL_SUPP to ZERO, as GNSS position sources use a per hour basis for integrity.

(5) Navigation Integrity Category (NIC). The ADS-B equipment must set the NIC based on the real-time integrity metric provided by the position source. When interfacing GNSS position sources, the NIC should be based on the HPL or HIL. However, while HPL values significantly smaller than 0.1 nm can be output from single frequency GNSS sources, the HPL may not actually achieve the reported level of protection as there are error contributions that are no longer considered negligible. You should review the position source design data to determine if all error sources are taken into consideration, or if the position source limits the HPL output, when computing an un-augmented receiver autonomous integrity monitoring (RAIM) based HPL. This applies to all TSO-C129 and TSO-C196 position sources, and to TSO-C145 and TSO-C146 position sources when operating in un-augmented modes where the HPL is based on
RAIM. If the position source does not account for all errors or accomplish the appropriate HPL limiting, you must ensure you interface the position source to ADS-B equipment which limits the NIC ≤ 8. If a SBAS position source provides a mode indication, it is acceptable to only limit the NIC ≤ 8 when in the non-augmented mode. See appendix 2, paragraph 4 c for additional information on HPL considerations.

(6) Navigation Accuracy Category for Position (NACP). The ADS-B equipment must set the NACP based on the real time 95% accuracy metric provided by the position source. When interfacing GNSS sources, the NACP should be based on a qualified horizontal figure of merit (HFOM).

(7) Navigation Accuracy Category for Velocity (NACV). Set the NACV based on design data provided by the position source manufacturer. The NACV may be updated dynamically from the position source, or set statically based on qualification of the position source.

(a) A NACV = 1 (< 10 m/s) may be permanently set at installation for GNSS equipment passing the tests identified in appendix 2, or may be set dynamically from velocity accuracy output of a position source qualified in accordance with the appendix 2 guidance.

(b) A NACV = 2 (< 3 m/s) may be set dynamically from velocity accuracy output of a position source qualified in accordance with the appendix 2 guidance. Do not permanently pre-set a NACV = 2 at installation, even if the position source has passed the tests identified in appendix 2.

(c) A NACV = 3 or NACV = 4 should not be set based on GNSS velocity accuracy unless you can demonstrate to the FAA that the velocity accuracy actually meets the requirement.

(8) Geometric Altitude. Ensure that the geometric altitude provided by the position source is based on height-above-ellipsoid (HAE) instead of height-above-geoid (HAG). Do not interface a position source that provides HAG or mean sea level (MSL) altitude to the ADS-B equipment unless the ADS-B equipment has the ability to determine the difference between an HAG and HAE input, and that the ADS-B equipment has demonstrated during design approval that it can properly convert HAG to HAE using the same model as the position source.

(9) Geometric Vertical Accuracy (GVA). Set the GVA based on design data provided by the position source manufacturer. GNSS position sources may provide the geometric altitude accuracy through the vertical figure of merit (VFOM). If the position source does not output a qualified vertical accuracy metric, the GVA parameter should be set to “0”.

(10) Ground Track Angle. For installations that do not have heading information available, ground track from the position source must be transmitted while on the surface. Many position sources will provide accurate ground track information, but the ground track may only be accurate above certain ground speeds. If the position source ground track is inaccurate below a certain ground speed and the position source does not inhibit output of the ground track at these slower
speeds, the installer should ensure that the ADS-B equipment has the capability to invalidate the
ground track when the GNSS ground speed falls below 7 knots. Erroneous ground track readings
could be misleading for ATC surface operations and ADS-B In applications. If the position source
itself inhibits output of ground track at slower speeds where the ground track would be inaccurate, the
installer may interface the position source ground track to the ADS-B equipment without any
restrictions.

3-4. Barometric Altitude Source.

a. Equipment Eligibility.

(1) Utilize barometric altitude from a barometric altimeter meeting the minimum
performance requirements of:

(a) TSO-C10, Altimeter, Pressure Actuated, Sensitive Type, (any revision) or

(b) TSO-C106, Air Data Computer (any revision).

(2) If appropriate, utilize a digitizer meeting the minimum performance requirements
of any revision of TSO-C88, Automatic Pressure Altitude Reporting Code-Generating
Equipment.

b. Installation Guidance.

(1) The barometric altitude used for the ADS-B broadcast must be from the same
source as the barometric altitude used for the ATC transponder Mode C reply, if an
altitude-encoding transponder is installed in the aircraft.

(2) 14 CFR §§ 91.225 and 91.227 do not alter any existing regulatory guidance
regarding the barometric altitude accuracy or resolution. For example, if an operation requires a
25 foot altitude resolution or a 14 CFR part 91 appendix G, Operations in Reduced Vertical
Separation Minimum (RVSM), accuracy, that resolution and accuracy should be reflected in the
ADS-B message.

(3) If a secondary altitude source is utilized when a secondary transponder is selected
or a secondary altitude source is selected for a single transponder, the altitude source for ADS-B
must also be changed so that the altitude source remains the same for both the transponder and
ADS-B.

c. Configuration of Associated Parameters. The following paragraphs provide
additional guidance on setting key ADS-B Out parameters. Definitions for each of the following
associated parameters are included in appendix 1.

(1) Barometric Altitude. The ADS-B equipment must update the barometric altitude
based on the real-time barometric altitude provided by the barometric altitude source.
(2) **Barometric Altitude Integrity Code (NIC\textsubscript{BARO})** You should verify the type of altitude source installed in the aircraft and interface the altitude system per the ADS-B equipment manufacturer’s instructions. For aircraft with an approved, non-Gillham altitude source, NIC\textsubscript{BARO} should be preset at installation to ONE. For aircraft with a Gillham altitude source without an automatic cross-check, NIC\textsubscript{BARO} must be preset at installation to ZERO. For aircraft which dynamically cross-check a Gillham altitude source with a second altitude source the NIC\textsubscript{BARO} must be set based on the result of this cross-check. We recommend that ADS-B installations use non-Gillham altitude encoders to reduce the potential for altitude errors.

3-5. Heading Source.

 a. **Equipment Eligibility.** For installations that integrate heading on the airport surface, the heading source must meet the minimum performance requirements of any revision of TSO-C5, *Direction Instrument, Non-Magnetic (Gyroscopically Stabilized)*, or any revision of TSO-C6, *Direction Instrument, Magnetic (Gyroscopically Stabilized)*. The equipment must have the appropriate installation and airworthiness approval.

 b. **Installation Guidance.**

 (1) The heading does not need to come from the same source as the position and velocity.

 (2) Interfacing heading is not required, but highly encouraged if the aircraft has an approved heading source.

 c. **Configuration of Associated Parameters.** When the aircraft is on the surface, the ADS-B system is required to transmit either heading or ground track, however we recommend transmitting heading if a source of heading information is available and valid. True heading is preferred, but magnetic heading is acceptable. Ensure the heading type (true or magnetic) interfaced to the ADS-B equipment matches the heading type transmitted from the ADS-B equipment.

3-6. TCAS Status Source.

 Note: Many aircraft will be equipped with a Mode S transponder with ADS-B functionality and a TCAS II. The Mode S transponder is considered to be a component of the TCAS II system and also a component of the ADS-B system.
b. Installation Guidance.

(1) TCAS II Interface. TCAS II is not a required part of the ADS-B system, however if TCAS II is installed on your aircraft, the equipment must be integrated so that the “TCAS installed and operational” and the “TCAS traffic status” parameters indicate the real-time status of the TCAS II.

(2) TCAS II Hybrid Surveillance. If an ADS-B In system is installed in an aircraft equipped with a TCAS II hybrid surveillance system compliant with RTCA/DO-300, the TCAS II will utilize ADS-B In position data to reduce the interrogation rates of low threat intruders. The information transmitted by ADS-B Out systems installed in accordance with the guidance in this AC is suitable for use by TCAS II hybrid surveillance. See AC 20-151A for more information on hybrid surveillance.

(3) The ADS-B transmission of the “TCAS operational” or “TCAS Resolution Advisory (RA) active” messages does not increase the hazard level of the ADS-B equipment defined in TSO-C166b or TSO-C154c.

c. Configuration of Associated Parameters. The following paragraphs provide additional guidance on setting key ADS-B Out parameters. Definitions for each of the following associated parameters are included in appendix 1.

(1) TCAS Installed and Operational. This parameter must interface with the TCAS II system if a TCAS II system is installed on your aircraft. This parameter should be preset to ZERO if a TCAS II is not installed in your aircraft or if a TCAS I is installed in your aircraft. Typically, this parameter will already be provided to the Mode S transponder from the TCAS II. TCAS II systems compliant with TSO-C119() indicate they are operational and able to issue an RA when they transmit Reply Information (RI) = 3 or 4 to the transponder.

(2) TCAS Traffic Status. This parameter must be interfaced with the TCAS II system if a TCAS II system is installed on your aircraft. The TCAS traffic status parameter can be preset to ZERO in accordance with the ADS-B equipment manufacturer’s instructions if a TCAS II is not installed.

3-7. Pilot Interface.

a. Equipment Eligibility. There are no unique equipment requirements.

b. Installation Guidance.

(1) System Status. The installation must have a method to display system operational status to the flight crew, which is consistent with the overall flight deck design philosophy. The system must display flight crew inputs such as Mode 3/A code, emergency codes, IDENT, and call sign. If an existing transponder is used to input Mode 3/A codes, emergency codes, and IDENT into the ADS-B system, the current transponder control interface is sufficient. The
following two failure annunciations must be available to the flight crew.

(a) **ADS-B Device Failure.** If the ADS-B equipment is unable to transmit ADS-B messages, the system provides an appropriate annunciation to the flight crew.

(b) **ADS-B Function Failure.** The ADS-B system depends on a position source to provide the data to populate the ADS-B messages and reports. This position source or interface may fail and prevent the system from providing pertinent information to the ADS-B equipment. In this case, the ADS-B system cannot function, but there is not a failure of the ADS-B equipment. TSO-C166b and TSO-C154c require this condition to be annunciated. The ADS-B system should indicate this position source or interface failure independently of the ADS-B equipment failure annunciation. The flight manual must describe the means to interpret the difference between the device failure and function failure annunciations if the annunciations are not unique. The ADS-B function failure must not cause a TCAS II system failure.

(2) **Turning Off ADS-B.** 14 CFR § 91.225 requires that all aircraft equipped with ADS-B Out operate with the equipment turned on at all times. There are no 14 CFR § 91.227 requirements to disable ADS-B broadcasts at the request of ATC. When ADS-B functionality resides in the Mode S transponder, it is acceptable for the only means to disable the ADS-B transmissions to be disabling the transponder. If this architecture is used, specify the impact in the flight manual, (e.g. loss of ADS-B, transponder and TCAS functionality). Locate the ADS-B on/off controls to prevent inadvertent actuation.

(3) **Anonymity Feature.** 14 CFR § 91.227 contains specific provisions allowing operators with TSO-C154c equipment to transmit a self-assigned (randomized) temporary 24-bit address and a blank call sign. No such provision is provided for TSO-C166b equipment. After January 1, 2020 and in the airspace identified in 14 CFR § 91.225, the UAT anonymous 24-bit address feature may only be used when the operator has not filed a flight plan and is not requesting ATC services. The UAT call sign may also be omitted, but only when the anonymous 24-bit address is chosen. We do not recommend integrating the anonymity features, as the operator will not be eligible to receive ATC services, may not be able to benefit from enhanced ADS-B search and rescue capabilities, and may impact ADS-B In situational awareness benefits. The following considerations must be included in the ADS-B system design when installing equipment capable of utilizing the anonymity feature:

(a) When the ADS-B equipment is initially powered-on, the 24-bit address must default to the aircraft’s assigned ICAO 24-bit address.

(b) When the ADS-B equipment is initially powered-on, the call sign may not be blank. At initial power-on it is acceptable for the call sign to revert to a non-blank call sign which existed prior to the ADS-B equipment being powered off, or to the aircraft registration number.

(c) The ADS-B equipment can only allow an anonymous 24-bit address selection if the Mode 3/A code is set to 1200.
(d) The ADS-B equipment may only allow selection of the anonymous 24-bit address via a dedicated pilot interface. The ADS-B Out equipment may not automatically set an anonymous 24-bit address or set a blank call sign based solely on pilot selection of the 1200 Mode 3/A code.

(e) The ADS-B Out equipment must automatically disable the anonymity feature if any Mode 3/A code other than 1200 is selected. The 24-bit address must automatically revert to the aircraft’s assigned ICAO 24-bit address. If the call sign was blank, the call sign must automatically revert to the aircraft registration number.

(f) Describe the ramifications of selecting the anonymity features in the flight manual. Ramifications include the inability to receive IFR or VFR separation services, potential loss of enhanced search and rescue benefits, and potential negative impacts to ADS-B In applications.

c. Configuration of Associated Parameters. The following paragraphs provide additional guidance on setting key ADS-B Out parameters. Definitions for each of the following associated parameters are included in appendix 1.

1. Call Sign/Flight ID. The assigned aircraft registration number must be set as the call sign/flight ID during installation. Procedures for dynamically selecting a call sign must be included in the flight manual if the ADS-B equipment provides a means to input a radio telephony call sign. If pilot-selectable, the call sign/flight ID should be readily apparent to the flight crew. When the ADS-B equipment is initially powered on, the call sign/flight ID may not be blank. At initial power-on it is acceptable for the call sign/flight ID to revert to a non-blank call sign which existed prior to the ADS-B equipment being powered off, or to the aircraft registration number. See paragraph 3-7 b. (3) for information on TSO-C154c selection of an anonymous (blank) call sign.

 Note: The preset call sign/flight ID will have to be updated if the aircraft’s registration number changes.

2. Emergency Status. The installation must provide a means for the pilot to enter the emergency status of the aircraft. Although TSO-C166b and TSO-C154c identify multiple emergency codes, only the codes for general emergency, no communications, and unlawful interference are required to be available for broadcast. It is acceptable to base the ADS-B emergency status on the emergency status code input into the transponder (i.e. Mode 3/A codes 7500, 7600, and 7700.) See paragraph 3-7 c (5) for information on single point of entry of the emergency status.

3. IDENT. The installation must provide a means for the pilot to enter the IDENT feature. See paragraph 3-7 c (5) for information on single point of entry of the IDENT.

4. Mode 3/A Code. The installation must provide a means for the pilot to enter the Mode 3/A code. See paragraph 3-7 c (5) for information on single point of entry of the Mode 3/A code.
(5) **Single Point of Entry.** Aircraft equipped with a transponder and ADS-B system should provide the pilot a single point of entry into both systems for the Mode 3/A code, IDENT, and emergency status. If ADS-B equipment sets the emergency status, IDENT, or Mode 3/A code based on entry of these parameters into a separate transponder, the STC/TC needs to identify the appropriate transponder interfaces. Experience in the CAPSTONE program demonstrated that operator mitigations to prevent differing codes from being entered in the transponder and ADS-B system were ineffective and resulted in numerous false and misleading proximity alerts for ATC. Additionally, there are workload and safety concerns of requiring the pilot to enter the Mode 3/A code, IDENT, and emergency codes multiple times. Thus, if you do not provide a single point of entry for the mode 3/A code, IDENT, and emergency code you must accomplish a human factors evaluation and an additional system safety assessment as follows:

(a) **Human Factors Evaluation.** Installations not providing a single point of entry must accomplish an evaluation of the pilot interface controls to ensure the design minimizes the potential for entry errors by the flight crew, and enables the flight crew to detect and correct errors that do occur. Evaluate the system interface design to ensure that dual entry of the emergency status, IDENT, and Mode 3/A code does not introduce significant additional workload, particularly when communicating an aircraft emergency. See paragraph 4-1 e (4) for additional information on the human factors evaluation.

(b) **System Safety Assessment.** Transmission of false or misleading information is considered to be a major failure effect and may not occur at a rate greater than 1×10^{-5} per hour for ADS-B systems. Installations not providing a single point of entry must accomplish a safety assessment that demonstrates that the probability of the transponder and ADS-B system ever transmitting differing Mode 3/A codes is less than 1×10^{-5} per hour. The analysis must consider the potential of all pilot errors.

3-8. **ADS-B Antenna Interface.** The aircraft ADS-B antenna is an important part of the overall ADS-B Out system because antenna systems are major contributors to the system link performance. The location and number of antennas required for the airborne ADS-B Out system is a function of the equipment class of the selected broadcast link (UAT or 1090ES). Single bottom-mounted antenna (TSO-C166b and TSO-C154c A1S and B1S classes) installations are allowed. For the UAT link, 16-watts minimum transmit power at the antenna output is required. For the 1090ES link, 125 watts minimum transmit power at the antenna output is required.

a. **Equipment Eligibility.** ADS-B antennas must meet requirements defined in the ADS-B equipment manufacturer’s installation manual.

b. **Installation Guidance.**

(1) **Utilizing an Existing Transponder Antenna.** When utilizing an existing transponder antenna system, if the installation does not modify the existing transponder antenna(s), cabling, or output specifications, the antenna installation does not have to be reevaluated.
(2) Installing a New Shared Transponder/ADS-B Antenna. Follow the transponder antenna installation guidance in AC 20-151().

(3) Installing a New Stand-Alone UAT ADS-B Antenna. If the UAT system is installed in an aircraft without a transponder or the installation will not utilize the existing transponder antenna, use the following guidance:

 a. Antenna Location. Mount antennas as near as practical to the centerline of the fuselage and locate them in a position to minimize obstruction in the horizontal plane.

 b. Antenna Distance from Other Antennas. The spacing between the UAT antenna and any transponder (Mode S or air traffic control radar beacon system (ATCRBS)) antenna must provide a minimum of 20dB of isolation between the two antennas. If both antennas are conventional omni-directional matched quarter-wave stubs, 20 dB of isolation is obtained by providing a spacing of at least 20 inches between the centers of the two antennas. If either antenna is other than a conventional stub, the minimum spacing must be determined such that 20 dB or more of isolation is achieved.

 c. Transmit Power. Transmit power will be verified during ground test.

 d. Structural Analysis. You must submit a structural analysis of new antenna installations to show compliance with the applicable regulations.

(4) Antenna Diplexers. Diplexers manufactured in accordance with TSO-C154b or TSO-C154c may be installed so that UAT ADS-B equipment and a transponder may share the same antenna. The TSO-C154b and TSO-C154c diplexer installation instructions are required to have a limitation that ensures insertion of the diplexer does not exceed the maximum cable attenuation allowance between the transponder and antenna.

(5) Single Antenna. Single antenna systems must utilize a bottom mounted antenna.

c. Configuration of Associated Parameters. The following paragraphs provide additional guidance on setting key ADS-B Out parameters. Definitions for each of the following associated parameters are included in appendix 1.

 1) GNSS Antenna Offset and Position Offset Applied (POA). Although not required to comply with 14 CFR § 91.227, it is highly encouraged for ADS-B equipment manufacturers to provide instructions to installers for setting this parameter and for installers to configure the offset during installation. The GNSS antenna offset information will be extremely valuable for surface ATC surveillance and future ADS-B In surface situational awareness and surface collision alerting applications. If the ADS-B equipment is interfaced to multiple GNSS position sources that utilize GNSS antennas in different locations on the aircraft, the installation must have provisions to ensure the appropriate GNSS antenna offset is being transmitted when the ADS-B equipment switches from one position source to another.

 2) Single Antenna Bit. Set this parameter at installation to the appropriate value.
d. **Mutual Suppression.** Follow the ADS-B equipment manufacturer’s guidance on interfacing the ADS-B Out equipment to the mutual suppression bus.

3-9. **Vertical Rate Source.** We recommend that the ADS-B system output the vertical rate field when available. The vertical rate may come from a barometric air data computer, a GNSS source, or a system which filters barometric and geometric vertical rates. Vertical rate will typically come from a position source or an air-data computer. This section addresses this unique parameter, and augments paragraph 3-3 and 3-4, as applicable.

a. **Equipment Eligibility.** Unlike position accuracy, vertical velocity accuracy is not transmitted in ADS-B messages. Thus it is important that vertical velocity sources integrated into the ADS-B system meet minimum performance requirements at installation. Use the following guidance:

(1) **Hybrid Vertical Rate Source.** Vertical rate may be taken from a hybrid system which filters barometric vertical rate with an inertial reference unit (IRU) vertical rate and GNSS vertical rate, provided the hybrid system was tested and approved to provide a vertical rate output with an accuracy that is at least as good as barometric vertical rate sources (e.g. TSO-C106). Hybrid vertical rate could come from a flight management system (FMS), air data and inertial reference system (ADIRS), or an IRU. ADS-B equipment should transmit hybrid vertical rate solutions as barometric vertical rates.

(2) **Blended Vertical Rate Source.** Vertical rate may be taken from a blended system which filters inertial reference unit (IRU) vertical rate and barometric vertical rate, provided the blended system was tested and approved to provide a vertical rate output with an accuracy that is at least as good as barometric vertical rate sources (e.g. TSO-C106). Blended vertical rate could come from a flight management system (FMS), air data and inertial reference system (ADIRS), or an IRU. ADS-B equipment should transmit blended vertical rate solutions as barometric vertical rates.

(3) **Barometric Vertical Rate Source.** Barometric vertical rate may be taken from an air data computer meeting the minimum performance requirements of any revision of TSO-C106 or a vertical velocity instrument meeting the minimum performance requirements of applicable revisions of TSO-C8, *Vertical Velocity Instruments*. We recommend you use any revision of a TSO-C106 compliant air data computer if you interface barometric vertical rate to the ADS-B Out equipment.

(4) **GNSS Vertical Rate Source.** Geometric vertical rate may be taken from any revision of TSO-C129, TSO-C145, TSO-C146, or TSO-C196 GNSS equipment if the position source has been qualified to provide vertical rate in accordance with appendix 2. Do not interface GNSS vertical velocity if the equipment has not been qualified in accordance with appendix 2.

(5) **Inertial Vertical Rate Source.** Vertical velocity from an inertial sensor that is not blended with barometric altitude should not be transmitted from the ADS-B system.
(6) Barometric Altitude Source. ADS-B systems should not derive a barometric altitude rate by sampling barometric altitude measurements. This could lead to misleading vertical velocity information. If barometric vertical rate is not available, use geometric vertical rate.

b. Installation Guidance. The vertical rate field can be populated with either barometric vertical rate or geometric vertical rate. There is no requirement to interface multiple vertical velocity sources. We recommend that you use the following priority scheme when selecting or interfacing multiple vertical rate sources:

(1) Hybrid vertical rate or blended vertical rate
(2) Barometric vertical rate
(3) GNSS vertical rate

c. Configuration of Associated Parameters. The following paragraphs provide additional guidance on setting key ADS-B Out parameters.

(1) Vertical Rate. Interface vertical rate from one or more of the sources listed above. Ensure the source provides vertical rate in feet per minute, or ensure the ADS-B equipment can recognize the vertical rate basis and convert the vertical rate to feet per minute.

(2) Vertical Rate Source. The source bit for vertical rate should be coded as barometric when utilizing barometric rate from an air data computer, or when using a blended or hybrid vertical rate. The source bit for vertical rate should only be coded as geometric when using vertical rate from a GNSS source.

3-10. Air-Ground Considerations.

a. The length width code is required by 14 CFR § 91.227, and is only transmitted in the surface position message. Thus, to comply with the rule, the aircraft must automatically determine its air-ground status and transmit the surface position message, which includes the length width code, when on the ground.

b. For aircraft with retractable landing gear, the air-ground status determination is typically provided through a landing gear weight-on-wheels switch. For aircraft that have fixed-gear, the ADS-B system must still be able to determine the air-ground status of the aircraft. Installations that provide a means to automatically determine air-ground status based on inputs from other aircraft sensors are acceptable if they are demonstrated to accurately detect the status. These algorithms should be tested and validated during the installation approval.

Note 1: We recommend that any automatic air-ground determination be more robust than just a simple comparison of ground speed to a single threshold value. Field experience has shown that this method can lead to false air-ground status.
Note 2: Manual selection of the air-ground status is not acceptable.

c. ICAO Annex 10, Volume IV, section 3.1.2.10.3.10 requires Mode S transponders to inhibit the reply to Mode A/C/S all-call and Mode S-only all-call interrogations on the surface. Mode S transponders with ADS-B functionality will now remain “ON” during surface operations, thus it is imperative that you ensure the transponder interface to the air-ground status is installed correctly and that the transponder does not reply to Mode A/C/S all-call or Mode S-only all-call interrogations on the surface.

Note: In deploying Airport Surface Detection Equipment version X (ASDE-X) at various airports we have found transponder installations that have been improperly wired and therefore inappropriately respond to ATC and TCAS interrogations while on the airport surface.
Chapter 4. Test & Evaluation

4-1. Ground Test.

a. Systems Interface Testing. Verify that the installed ADS-B equipment meets its intended function and transmits the appropriate information from each of the interfaced systems (position source, barometric altitude source, heading source, TCAS II, pilot interface, etc).

Note: If simulating dynamic conditions during ground testing the ADS-B system, you must prevent being a source of interference to ATC or ADS-B In equipped aircraft in the area. For example, transmitting airborne position reports with simulated airborne altitudes while on the surface will produce false targets for the ATC surveillance systems or airborne ADS-B In equipped aircraft.

b. System Latency. Latency is addressed through analysis rather than testing. See paragraph 3-1.

c. Rule Compliance. Ensure the ADS-B system meets the requirements of 14 CFR § 91.227.

(1) Ensure the installed system meets its stated accuracy and integrity performance under all foreseen conditions. We recommend that you accomplish a GNSS performance prediction for the applicable time of your test to ensure the ADS-B system meets the predicted performance. In absence of predicted GNSS performance, demonstrate that you meet all 14 CFR § 91.227 (c)(1) requirements, listed below:

(a) $\text{NAC}_p \geq 8$
(b) $\text{NIC} \geq 7$
(c) $\text{NAC}_v \geq 1$
(d) $\text{SIL} \geq 3$
(e) $\text{SDA} \geq 2$

(2) Ensure all 14 CFR § 91.227(d) parameters are properly populated and transmitted.

(3) Position Accuracy. Position the aircraft on a surveyed location and validate the position transmitted from the ADS-B system. Ensure that the position transmitted is within the allotted NAC_p accuracy limit. For example, if the aircraft reports a $\text{NAC}_p = 8$, the ADS-B position should be within 92.6 meters. If the aircraft reports a $\text{NAC}_p = 10$, the ADS-B position should be within 10 meters. Reference appendix 1 for a complete list of NAC_p values.
Barometric Altitude Accuracy. Validate that the barometric altitude transmitted from the ADS-B system is accurate to within 125 feet. If the aircraft has a transponder installed, you must also validate that the ADS-B barometric altitude matches the transponder barometric altitude.

d. Electromagnetic Interface (EMI)/Electro Magnetic Compatibility (EMC) Testing. Provide an EMI/EMC test plan that demonstrates compliance with 14 CFR § 23.1431 (a) and (b), 14 CFR § 25.1353 (a) and (b), 14 CFR § 25.1431 (a) and (c), 14 CFR § 29.1353 (a) and (b), 14 CFR § 29.1431 (a) and (b) as appropriate. Accomplish EMI/EMC testing to ensure that the ADS-B equipment does not provide an interference source on other installed systems on the aircraft. Additionally, ensure that equipment already installed in the aircraft does not interfere with the ADS-B system. If you’re STC or TC only involves a software change to an existing approved Mode S transponder installation, and the software update will not affect the systems response to EMI, you do not need to accomplish EMI testing again.

e. Human Machine Interface. Evaluate the flight crew interface for the ADS-B Out system including the human-system interface and system behavior. The ADS-B Out system must be compatible with the overall flight deck design characteristics (such as access to controls, sunlight readability, night lighting, etc.) as well as the airplane environment, such as vibrations.

(1) Information Display. Evaluate the ADS-B Out system to ensure displayed information is easily and clearly discernable, and has enough luminance, size, and visual contrast for the pilot to see and interpret it. Ensure the pilots have a clear, unobstructed, and undistorted view of the displayed information. Ensure information elements are distinct and permit the pilots to determine the source of the information elements if necessary, when there are multiple sources of the same kind of information.

(2) Controls and Labeling. Evaluate the controls for the pilot interface to ensure they are plainly marked as to their intended function, provide convenient operation, and prevent confusion and inadvertent operation of both the ADS-B system, and the other systems with which they interact. Evaluate the acronyms, labels, and annunciators to ensure they are used consistently in the flight deck, and do not cause confusion or errors. If a control performs more than one function, evaluate the labels to ensure the labels include all intended functions, unless the function of the control is obvious. During evaluation, consider line select keys, touch screens or cursor controlled devices (e.g., trackballs) as these can be susceptible to unintended mode selection resulting from their location in the flight deck (e.g. proximity to a foot rest or adjacent to a temporary stowage area).

(3) Annunciations and Alerts. Evaluate all ADS-B annunciations and alerts to ensure they are clear and unambiguous, and provide attention-getting and saliency appropriate to the type of alert. The colors yellow/amber and red should be restricted to cautions and warnings, respectively. Evaluate the annunciations and indications to ensure they are operationally relevant and limited to minimize the adverse effects on flight crew workload. When an annunciation is provided for the status or mode of a system, it is recommended that the annunciation indicate the actual state of the system, and not just the position of a switch.

(4) Pilot Interface Errors. Installations not providing a single point of entry for the ADS-B and transponder for the Mode 3/A code, IDENT, and emergency status must accomplish an
evaluation of the pilot interface controls to determine that they are designed to minimize entry errors by the flight crew, and enable the flight crew to detect and correct errors that do occur. System interface design must also be evaluated to ensure that dual entry of the Mode 3/A code, IDENT, and emergency status does not introduce significant additional workload, particularly when communicating an aircraft emergency. Evaluations should consider pilot-detected and undetected error rates, pilot workload, as well as training times. See paragraph 3-7 c (5) for additional information on transponder and ADS-B system single point of entry.

(5) Lighting. Evaluate all foreseeable conditions relative to lighting, including failure modes such as lighting and power system failure, and day and night operations.

f. Transponder Regression Testing. At a minimum, use the procedures outlined in AC 43-6(), Altitude Reporting Equipment and Transponder System Maintenance and Inspection Practices, to validate that the transponder is operating normally following the ADS-B installation. Use the procedures outlined in AC 20-151() for ADS-B systems that include installation of a new or modified Mode S transponder. If you are installing a new air-ground status capability for the ADS-B system and this functionality is also interfaced to the transponder, you must ensure that replies to the Mode A/C and ATCRBS/Mode S all-call interrogations are inhibited on the ground.

g. ICAO 24-bit Address. For U.S. civil aircraft, demonstrate that the 24-bit address transmitted by the system correlates to the aircraft registration number. If the system has a separate Mode S transponder and UAT ADS-B system installed, then ensure both the transponder and ADS-B system both transmit the same correct ICAO 24-bit address. For non-U.S. registered aircraft, verify that the ICAO 24-bit address is the address assigned to the aircraft by the responsible State authority.

h. Self Test. Evaluate the ADS-B self-test features (if provided) and failure mode annunciations to ensure that the pilot is able to determine whether the system is functioning properly.

i. Position Source Failure. Demonstrate that a failure or loss of the position source results in an indication to the operator of an ADS-B function failure. If a secondary position source is interfaced to the ADS-B equipment, ensure it meets all guidance in this AC. If the change from the primary position source to the secondary position source requires a change in SIL or SDA ensure these changes are accomplished within 10 seconds.

j. Air-Ground Status. Verify that the air-ground inputs (or algorithms) are functioning properly and that the ADS-B system transmits the appropriate airborne messages or surface messages based on the air-ground status. This can be accomplished with simulated inputs to the appropriate sensors or accomplished in conjunction with the flight test.

k. Transmit Power. Transmit power testing must be accomplished if a new antenna has been installed, an existing antenna has been relocated, if a diplexer has been installed into an existing antenna system, or the output specifications on the transponder have changed. Perform the following testing to validate transmit power:
Note: Upgrading a previously installed and approved TSO-C112() Mode S transponder to include ADS-B functionality does not require transmit power testing unless a new antenna has been installed, the antenna location has changed, or the output specifications on the transponder have changed.

(1) **1090ES Transmitter.** Verify that the peak pulse power at the antenna end of the transmission line meets the minimum and maximum power levels summarized in figure 3, considering the test equipment antenna gain and path loss. Repeat the measurement in each quadrant of the antenna pattern (forward, aft, left, right).

Figure 3. Minimum and Maximum Transmitted Power from TSO-C166b

<table>
<thead>
<tr>
<th>Tested Transmitter Class</th>
<th>Minimum Power</th>
<th>Maximum Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>21.0 dBW</td>
<td>27.0 dBW</td>
</tr>
<tr>
<td>A1S</td>
<td>21.0 dBW</td>
<td>27.0 dBW</td>
</tr>
<tr>
<td>B1</td>
<td>21.0 dBW</td>
<td>27.0 dBW</td>
</tr>
<tr>
<td>B1S</td>
<td>21.0 dBW</td>
<td>27.0 dBW</td>
</tr>
<tr>
<td>A2</td>
<td>21.0 dBW</td>
<td>27.0 dBW</td>
</tr>
<tr>
<td>A3</td>
<td>23.0 dBW</td>
<td>27.0 dBW</td>
</tr>
</tbody>
</table>

(2) **UAT Transmitter.** Verify that the peak pulse power at the antenna end of the transmission line meets the minimum and maximum power levels summarized in figure 4, considering the test equipment antenna gain and path loss. Repeat the measurement in each quadrant of the antenna pattern (forward, aft, left, right).

Figure 4. Minimum and Maximum Transmitted Power from TSO-C154c

<table>
<thead>
<tr>
<th>Tested Transmitter Class</th>
<th>Minimum Power</th>
<th>Maximum Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1H</td>
<td>12.0 dBW</td>
<td>16.0 dBW</td>
</tr>
<tr>
<td>A1S</td>
<td>12.0 dBW</td>
<td>16.0 dBW</td>
</tr>
<tr>
<td>B1</td>
<td>12.0 dBW</td>
<td>16.0 dBW</td>
</tr>
<tr>
<td>B1S</td>
<td>12.0 dBW</td>
<td>16.0 dBW</td>
</tr>
<tr>
<td>A2</td>
<td>12.0 dBW</td>
<td>16.0 dBW</td>
</tr>
<tr>
<td>A3</td>
<td>20.0 dBW</td>
<td>24.0 dBW</td>
</tr>
</tbody>
</table>

1. **TCAS.** If a TCAS II system is installed on the aircraft, ensure that the proper messages are transmitted by the ADS-B system when the TCAS II is on and operating in a mode that can provide RAs. No TCAS II system regression testing beyond the ground interface testing covered in this section is required.
m. Transponder All-Call Inhibit. When ADS-B functionality resides in a Mode S transponder, conduct a test which demonstrates that replies to Mode A/C/S all-call and Mode S-only all-call interrogations are inhibited on the ground. Also demonstrate that replies to discrete interrogations are not inhibited.

4-2. Flight Test.

a. Mutual Interference. During all phases of flight, demonstrate that there is no mutual interference with any other aircraft system. Have all installed systems operating during the flight test.

b. Other System Performance. Demonstrate the proper performance of any previously installed aircraft systems that required changes as a result of the ADS-B installation in accordance with the applicable policy.

c. User Interface. Exercise all user inputs. If separate user inputs are required for the transponder and ADS-B systems, evaluate the flight manual procedures for ensuring that the same Mode 3/A code, IDENT, and emergency codes are transmitted from both systems.

4-3. In-Flight Test with FAA Ground System. Perform a flight test to show that the installed system performs properly with the FAA ground system. The test will verify that the FAA ground system properly receives the aircraft’s ADS-B broadcast, that the aircraft’s transmitted data is correct, and that there are no dropouts of parameters. Currently the only method available to accomplish the flight test is to fly within ADS-B service coverage and accomplish a post flight analysis of the data received from the FAA. This test is intended to evaluate the design interface issues for the position source and the ADS-B equipment. If you have flight test data from a previous STC or TC which established this compatibility, you do not need to re-accomplish the flight test.

Note 1: This flight test is intended to complete a design approval under an STC or TC application; it is not intended for the alteration of individual aircraft.

Note 2: Follow your standard process for requesting flight test authorization, there are no unique flight test authorization requirements for ADS-B flight tests.

a. Preflight Coordination.

(1) Data Retrieval. 48 hours prior to the flight, notify the FAA by emailing 'amc-ajw-sbsm@faa.gov that you require data from the flight test to support post flight analysis. Include contact information for your ACO point of contact, aircraft registration number or applicable call sign, 24-bit address, expected date, and approximate time of the flight.
(2) **ATC Coordination.** There is no ADS-B specific requirement to coordinate the flight test in advance with ATC. Follow normal flight test procedures for coordinating with ATC.

b. **Flight Test Profile.** This profile is intended to be flown on all ADS-B system approvals. The profile need not be flown exactly, and variances for ATC clearances and vectors are acceptable. The flight test should cover a minimum of 1 hour. If the profile is completed in less than 1 hour, continue the flight and collect pertinent data. The flight test may not be performed using the random UAT 24-bit address feature, since the 24-bit address is a key field in retrieving the ATC flight profile data. The profile discussed in paragraph 4-3 b (1) thru (6) below may be flown in any order.

(1) **Location of Flight.** The flight may be accomplished in any airspace that has FAA ADS-B ground station coverage. At the time of publication of this AC, the FAA had ground systems operational in southern Florida, the Gulf of Mexico, the Philadelphia, PA, area, the Louisville, KY, area, and the Juneau, AK, area. Coverage areas will steadily increase through 2013, when the FAA anticipates having ADS-B coverage throughout the U.S. National Airspace System. See the following web site for information on existing ADS-B coverage in the NAS: http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/enroute/surveillance_broadcast/coverage/

(2) **Distance from Ground Station.** This flight profile does not specify the distance the aircraft must be from an ADS-B ground station. Transmit power is evaluated through ground testing instead of demonstrating a minimum air-to-ground reception distance.

(3) **Altitude.** Fly the aircraft at multiple altitudes throughout the flight within ADS-B coverage. There is no maximum or minimum altitude required for the flight test.

(4) **Turns.** At two different points during the flight test, fly two left and two right 360-degree turns. Turns should be at least at standard rate unless limited by the aircraft’s flight manual.

(5) **Climbs/Descents.** Accomplish climbs at both the best rate and best angle of climb. Accomplish descents at maximum descent rates specified in the aircraft’s flight manual. Climbs and descents should be accomplished in take off, landing, and cruise configurations.

(6) **Position Accuracy.** Utilizing a known waypoint, fly a north/south course that crosses the defined waypoint followed by an east/west course that crosses the same defined way point.

c. **Post-flight Data Retrieval.** Within 48 hours of completing the STC or TC flight test against the FAA ground stations, email 'amc-ajw-sbsm@faa.gov' to request flight data from your flight. You must include your Type Inspection Authorization, name and email address of your ACO project engineer, aircraft registration number or applicable call sign, 24-bit address, date, and time of the flight.

d. **Post-flight Data Analysis.** You must accomplish a post flight data analysis to ensure that the aircraft is consistently transmitting accurate ADS-B information. Ensure all data
associated with the track is consistent, such as position, 24-bit address, velocity, flight ID, barometric altitude, Mode 3/A code, emitter category, and geometric altitude. The post flight data analysis should also reveal if there was any unexpected data loss that could have been caused from intermittent wiring interfaces or interface incompatibility. The flight test does not require the use of a truth source to accomplish post flight data analysis, however the FAA will provide radar data when available to help analyze the flight track. At a minimum, analyze the following areas:

(1) Rule Compliance. Review the data from the FAA ground system for the flight to ensure the installed system meets its stated accuracy and integrity performance under all foreseen conditions. We recommend that you accomplish a GNSS performance prediction for the applicable time of your test and ensure the ADS-B system meets the predicted performance. In absence of predicted GNSS performance, demonstrate that you meet all 14 CFR § 91.227 (c)(1) requirements, listed below:

(a) Ensure NIC ≥ 7 throughout the flight.
(b) Ensure NACP ≥ 8 throughout the flight.
(c) Ensure SIL ≥ 3 throughout the flight.
(d) Ensure NACv ≥ 1 throughout the flight.
(e) Ensure SDA ≥ 2 throughout the flight.

(2) Position Accuracy/Integrity. Compare the track received by the FAA ground system with the actual flight track. There is no specific tolerance for this test; rather the applicant must show there are no gross position errors, track offsets or discontinuities, or other obvious anomalies.

(3) Velocity Accuracy. Compare the velocity received by the FAA ADS-B ground system with the actual velocities flown. There is no specific tolerance for this test; rather you must show that they compare reasonably, and that there are no gross velocity errors.

(4) Geometric Altitude Accuracy. Compare the geometric altitude received by the FAA ground system with the geometric altitude flown. There is no specific tolerance for this test; rather you must show that they compare reasonably, and that there are no gross geometric altitude errors.

(5) Barometric Pressure Altitude Accuracy. Compare the barometric pressure altitude received by the FAA ground system with the actual barometric pressure altitude flown. There is no specific tolerance for this test; rather you must show that they compare reasonably, and that there are no gross barometric pressure altitude errors.

(6) Validity Checks. The FAA plans to utilize radar, multilateration, and UAT passive ranging as independent validity checks for ADS-B. The validity check will indicate “valid” when the
independent check is able to validate the ADS-B position, “invalid” when it determines the ADS-B position is out of tolerance, and “unknown” if it is unable to accomplish the validity check. If a validity or an enhanced validity status is provided in the flight test data, then you must show that it never indicates invalid.

Note: Validity checks are planned to ensure the ADS-B position is within 0.56 nm in terminal airspace and 1.9 nm in en route airspace. Enhanced validity checks are planned to ensure the ADS-B position is within 0.2 nm within approximately 15 nm of terminal radars and close proximity to airports with Airport Surface Detection Equipment, Model X (ASDE-X) systems.

4-4. International Flight Test Options. If the aircraft is being flight tested outside of the United States, it is acceptable to perform the flight test against another air navigation service provider’s (ANSP) ground system. Other ANSP’s ground systems must be fully operational and appropriately qualified to provide air traffic control separation services. Other ANSP ground systems must also be able to provide all parameters required by 14 CFR § 91.227. You will have to work with the foreign ANSP to retrieve the necessary data.
Appendix 1. Message Elements Descriptions

1. Position. These parameters are derived from the position source and provide a geometric based position. Reference all geometric position elements broadcast from the ADS-B unit to the World Geodetic System 1984 (WGS-84) ellipsoid. Latitude and longitude is required to be transmitted by 14 CFR § 91.227.

2. Navigation Integrity Category (NIC). The NIC parameter specifies a position integrity containment radius. NIC is reported so that surveillance applications, such as ATC or other aircraft, may determine whether the reported geometric position has an acceptable level of integrity for the intended use. The NIC parameter is closely associated with the SIL. While NIC specifies the integrity containment radius, SIL specifies the probability of the actual position lying outside that containment radius without indication. ADS-B systems should derive the NIC from an approved position source’s integrity output, such as the horizontal protection level (HPL) from the GNSS. A minimum NIC value of seven must be transmitted to operate in airspace defined in 14 CFR § 91.225. Figure 5 provides the applicable NIC values.

![Figure 5. NIC Values](image)

<table>
<thead>
<tr>
<th>NIC</th>
<th>Containment Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>$R_C < 37.04\ km$ (20nm)</td>
</tr>
<tr>
<td>2</td>
<td>$R_C < 14.816\ km$ (8nm)</td>
</tr>
<tr>
<td>3</td>
<td>$R_C < 7.408\ km$ (4nm)</td>
</tr>
<tr>
<td>4</td>
<td>$R_C < 3.704\ km$ (2nm)</td>
</tr>
<tr>
<td>5</td>
<td>$R_C < 1852\ m$ (1nm)</td>
</tr>
<tr>
<td>6</td>
<td>$R_C < 1111.2\ m$ (0.6nm)</td>
</tr>
<tr>
<td></td>
<td>$R_C < 926\ m$ (0.5nm)</td>
</tr>
<tr>
<td></td>
<td>$R_C < 555.6\ m$ (0.3nm)</td>
</tr>
<tr>
<td>7</td>
<td>$R_C < 370.4\ m$ (0.2nm)</td>
</tr>
<tr>
<td>8</td>
<td>$R_C < 185.2\ m$ (0.1nm)</td>
</tr>
<tr>
<td>9</td>
<td>$R_C < 75\ m$</td>
</tr>
<tr>
<td>10</td>
<td>$R_C < 25\ m$</td>
</tr>
<tr>
<td>11</td>
<td>$R_C < 7.5\ m$</td>
</tr>
</tbody>
</table>

3. Navigation Accuracy Category for Position (NAC$_P$). The NAC$_P$ specifies the accuracy of the aircraft’s horizontal position information (latitude and longitude) transmitted from the aircraft’s avionics. The ADS-B equipment derives a NAC$_P$ value from the position source’s accuracy output, such as the HFOM from the GNSS. The NAC$_P$ specifies with 95% probability that the reported information is correct within an associated allowance. A minimum NAC$_P$ value of eight must be transmitted to operate in airspace defined in 14 CFR § 91.225. Figure 6 provides the applicable NAC$_P$ values.
Figure 6. NAC\textsubscript{P} Values

<table>
<thead>
<tr>
<th>NAC\textsubscript{P}</th>
<th>Horizontal Accuracy Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EPU \geq 18.52 km (10nm)</td>
</tr>
<tr>
<td>1</td>
<td>EPU < 18.52 km (10nm)</td>
</tr>
<tr>
<td>2</td>
<td>EPU < 7.408 km (4nm)</td>
</tr>
<tr>
<td>3</td>
<td>EPU < 3.704 km (2nm)</td>
</tr>
<tr>
<td>4</td>
<td>EPU < 1852 m (1nm)</td>
</tr>
<tr>
<td>5</td>
<td>EPU < 926 m (0.5nm)</td>
</tr>
<tr>
<td>6</td>
<td>EPU < 555.6 m (0.3nm)</td>
</tr>
<tr>
<td>7</td>
<td>EPU < 185.2 m (0.1nm)</td>
</tr>
<tr>
<td>8</td>
<td>EPU < 92.6 m (.05nm)</td>
</tr>
<tr>
<td>9</td>
<td>EPU < 30 m</td>
</tr>
<tr>
<td>10</td>
<td>EPU < 10 m</td>
</tr>
<tr>
<td>11</td>
<td>EPU < 3 m</td>
</tr>
</tbody>
</table>

4. Source Integrity Level (SIL). The SIL field defines the probability of the reported horizontal position exceeding the radius of containment defined by the NIC, without alerting, assuming no avionics faults. Although the SIL assumes there are no un-annunciated faults in the avionics system, the SIL must consider the effects of a faulted signal-in-space (SIS), if a signal-in-space is used by the position source. A minimum SIL value of three must be transmitted to operate in airspace defined in 14 CFR § 91.225. Figure 7 outlines the SIL values.

Note 1: The probability of an avionics fault causing the reported horizontal position to exceed the radius of containment defined by the NIC, without alerting, is covered by the SDA parameter.

Note 2: The SIL probability can be defined as either per sample or per hour as defined in the SIL supplement (SIL\textsubscript{SUPP}).

Figure 7. Probability of Exceeding the NIC Containment Radius.

<table>
<thead>
<tr>
<th>SIL Value</th>
<th>Probability of exceeding the NIC containment radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$\leq 1 \times 10^{-7}$ Per Hour or Sample</td>
</tr>
<tr>
<td>2</td>
<td>$\leq 1 \times 10^{-5}$ Per Hour or Sample</td>
</tr>
<tr>
<td>1</td>
<td>$\leq 1 \times 10^{-3}$ Per Hour or Sample</td>
</tr>
<tr>
<td>0</td>
<td>$> 1 \times 10^{-3}$ Per Hour or Sample or Unknown</td>
</tr>
</tbody>
</table>
5. **Source Integrity Level Supplement (SIL_{SUPP}).** The “SIL_{SUPP}” defines whether the reported SIL probability is based on a per hour probability or a per sample probability as defined in figure 8.

Figure 8. Source Integrity Level Supplement Table

<table>
<thead>
<tr>
<th>SIL Supplement</th>
<th>Basis for SIL Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probability of exceeding NIC containment radius is based on per sample</td>
</tr>
<tr>
<td>0</td>
<td>Probability of exceeding NIC containment radius is based on per hour</td>
</tr>
</tbody>
</table>

6. **System Design Assurance (SDA).** The SDA parameter defines the failure condition that the ADS-B system is designed to support as defined in figure 9. The supported failure condition will indicate the probability of an ADS-B system malfunction causing false or misleading position information or position quality metrics to be transmitted. This should include the probability of exceeding the containment radius without annunciation. Since the installer of ADS-B Out equipment does not know how the broadcast data will be used, the installer cannot complete a functional hazard assessment (FHA) evaluating the use of the broadcast data. The SDA provides a surrogate for such a FHA, by identifying the potential impact of an erroneous position report caused by an equipment malfunction. The definitions and probabilities associated with the supported failure effect are defined in AC 25.1309-1, *System Design and Analysis*, AC 23.1309-1(), *System Safety Analysis and Assessment for Part 23 Airplanes*, and AC 29-2, *Certification of Transport Category Rotorcraft (Changes 1-3 incorporated)*. The SDA includes the position source, ADS-B equipment, and any intermediary devices that process the position data. 14 CFR § 91.227 requires a SDA of 2 or 3 as defined in figure 9.
Figure 9. System Design Assurance Table

<table>
<thead>
<tr>
<th>SDA Value</th>
<th>Supported Failure Condition Note 2</th>
<th>Probability of Failure causing transmission of False or Misleading Information Note 3,4</th>
<th>Software & Hardware Design Assurance Level Note 1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hazardous</td>
<td>$\leq 1\times10^{-7}$ Per Hour</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Major</td>
<td>$\leq 1\times10^{-5}$ Per Hour</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>Minor</td>
<td>$\leq 1\times10^{-3}$ Per Hour</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>Unknown/ No safety effect</td>
<td>$> 1\times10^{-3}$ Per Hour or Unknown</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note 1: Software design assurance per RTCA/DO-178B or equivalent. Airborne electronic hardware design assurance per RTCA/DO-254 or equivalent.

Note 2: Supported failure classification defined in AC 25.1309-1, AC 23.1309-1, and AC 29-2.

Note 3: Because the broadcast position can be used by any other ADS-B equipped aircraft or by ATC, the provisions in AC 23.1309-1() that allow reduction in failure probabilities and design assurance level for aircraft under 6,000 pounds do not apply for the ADS-B system.

Note 4: Includes probability of transmitting false or misleading latitude, longitude, or associated position accuracy and integrity metrics.

7. **Geometric Altitude.** The geometric altitude is a measure of altitude provided by a satellite-based position service and is not affected by atmospheric pressure. Geometric altitude is only available with a GNSS position source. Geometric altitude for ADS-B purposes is the height above the WGS-84 ellipsoid (HAE). Geometric altitude is required to be transmitted by 14 CFR § 91.227.

8. **Horizontal Velocity.** The horizontal velocity provides the rate at which an aircraft changes its horizontal position with a clearly stated direction. Horizontal velocity is provided with the north/south velocity and the east/west velocity parameters while airborne. Horizontal velocity is provided by a combination of the ground speed and heading or ground track while on the surface. TSO-C166b and TSO-C154c require that the north/south velocity, east/west velocity, ground speed, and ground track come from the same source as the position. Heading information may come from a separate source. Horizontal velocity is required to be transmitted by 14 CFR § 91.227.

9. **Navigation Accuracy Category for Velocity (NAC₉).** The NAC₉ is an estimate of the accuracy of the horizontal geometric velocity output. The coding of ZERO, indicating that the
accuracy is unknown or either equal to or worse than 10 meters per second (m/s), is of little value to ADS-B applications. There is no vertical rate accuracy metric. A NAC$_V$ of greater than or equal to 1 is required by 14 CFR § 91.227.

10. **Barometric Pressure Altitude.** This parameter indicates the aircraft’s barometric pressure altitude referenced to standard sea level pressure of 29.92 inches of mercury or 1013.2 hectopascals. The barometric pressure altitude is required to be transmitted by 14 CFR § 91.227.

11. **Call Sign/Flight ID.** The term “aircraft call sign” is the radiotelephony call sign assigned to an aircraft for voice communications purposes. (This term is sometimes used interchangeably with “flight identification” or “flight ID”). For general aviation aircraft, the aircraft call sign is normally the national registration number; for airline and commuter aircraft, the call sign is usually comprised of the company identification and flight number (and therefore not linked to a particular airframe) and, for the military, it usually consists of numbers and code words with special significance for the operation conducted. The call sign or aircraft registration number is required to be transmitted by 14 CFR § 91.227 except when using the TSO-C154c anonymity feature.

12. **ICAO 24-bit Address.** The ICAO 24-bit address is the primary parameter used to identify the aircraft that is transmitting the ADS-B messages. ICAO 24-bit addresses are defined blocks of addresses assigned for participating countries or states worldwide. In the United States, civil aircraft are assigned an address from an encoding scheme based on the aircraft registration number (“N” number). Additional information regarding the 24-bit address can be found in the International Civil Aviation Organization (ICAO) Annex 10, Part I, Volume III, appendix to Chapter 9, A World-Wide Scheme for the Allocation, Assignment and Application of Aircraft Addresses. The ICAO 24-bit address is required to be transmitted by 14 CFR § 91.227 except when using the TSO-C154c anonymity feature.

13. **Aircraft Length and Width.** This parameter provides ATC and other aircraft with quick reference to the aircraft’s dimensions while on the surface. Aircraft length and width is required to be transmitted by 14 CFR § 91.227.

14. **Emergency Status.** This parameter alerts ATC that the aircraft is experiencing emergency conditions and indicates the type of emergency. Applicable emergency codes are found in ICAO Annex 10 Volume 4, *Surveillance Radar and Collision Avoidance Systems*. This information alerts ATC to potential danger to the aircraft so it can take appropriate action. Emergency status is required to be transmitted by 14 CFR § 91.227.

15. **IDENT.** ATC may request an aircraft to “IDENT,” to aid controllers to quickly identify a specific aircraft. The pilot manually enables the IDENT state, which highlights the aircraft to ATC. IDENT is required to be transmitted by 14 CFR § 91.227.

16. **Mode 3/A Code.** Currently ATC automation relies on the Mode 3/A code to identify aircraft under radar surveillance and correlate the target to a flight plan. Secondary surveillance radars (SSRs) and ADS-B will concurrently provide surveillance, so the Mode 3/A code is included in
the ADS-B Out message and is required to be transmitted by 14 CFR § 91.227.

17. **TCAS Installed and Operational**. This parameter indicates whether the aircraft is fitted with a TCAS II and if the TCAS II is turned on and operating in a mode that can generate resolution advisory alerts. The TCAS installed and operational parameter is required to be transmitted by 14 CFR § 91.227.

18. **TCAS Traffic Status**. This parameter indicates if a TCAS II equipped aircraft is currently generating a TCAS resolution advisory. The TCAS traffic status parameter is required to be transmitted by 14 CFR § 91.227.

19. **ADS-B In Capability**. Two messages indicate the ADS-B In status of the aircraft. The 1090 ADS-B In message indicates if the aircraft has the ability to receive 1090ES ADS-B messages installed. The UAT ADS-B In message indicates if the aircraft has the ability to receive UAT ADS-B messages installed. An indication of ADS-B In capability is important because TIS-B and ADS-R services are provided specific to an aircraft’s position relative to other aircraft. The FAA may only provide complete TIS-B and ADS-R services to aircraft that indicate they are ADS-B In capable. ADS-B In capability is required to be transmitted by 14 CFR § 91.227.

20. **Emitter Category**. The Emitter category provides an indication of the aircraft’s size and performance capabilities. Emitter categories are defined in TSO-C166b and TSO-C154c. Emitter category is designed primarily to provide information on the wake turbulence that an aircraft produces. Emitter category is required to be transmitted by 14 CFR § 91.227.

21. **Vertical Rate**. The barometric or geometric rate at which the aircraft is climbing or descending, measured in feet per minute. The vertical rate is typically generated by an air data computer or GNSS position source, or equipment which blends barometric vertical rate with inertial vertical rate and/or GNSS vertical rate.

22. **NICBARO**. NICBARO indicates if pressure altitude is provided by a single Gillham encoder or another more robust altitude source. Because of the potential for an undetected error in a Gillham encoding, many Gillham installations are cross-checked against a second altitude source. NICBARO annotates the status of this cross-check.

23. **Geometric Vertical Accuracy (GVA)**. The GVA indicates the 95% accuracy of the reported vertical position (geometric altitude) within an associated allowance.

24. **Receiving ATC Services**. This parameter existed in TSO-C166a and TSO-C154b compliant equipment, however it was removed from TSO-C166b and TSO-C154c equipment.

25. **Ground Speed**. This parameter is also derived from the position sensor and provides ATC with the aircraft’s speed over the ground. This parameter is reported in the surface position message.

26. **Heading**. Heading indicates the direction in which the nose of the aircraft is pointing. There is no heading accuracy metric. Heading or ground track is required to be transmitted while on the ground in order to transmit complete velocity information.
27. **Ground Track Angle.** The ground track angle is the direction of the horizontal velocity vector over the ground. Ground track or heading is required to be transmitted while on the ground in order to transmit complete velocity information.

28. **GNSS Antenna Offset and Position Offset Applied.**

 a. The GNSS Antenna Offset indicates the longitudinal distance between the nose of the aircraft and the GNSS antenna and the lateral distance between the longitudinal center line of the aircraft and the GNSS antenna.

 b. The position offset applied setting of the GNSS antenna offset indicates that the broadcast position is referenced to the aircraft’s ADS-B position reference point versus the GNSS antenna location. See paragraph 2.1.2.5 and figure 2-1 of RTCA/DO-242A for a depiction of the ADS-B position reference point.

29. **Single Antenna Bit.** Indicates if the ADS-B equipment is transmitting through a single bottom-mounted antenna.

30. **IFR Capability.** This parameter existed in TSO-C166a and TSO-C154b compliant equipment, however it was removed from TSO-C166b and TSO-C154c equipment.

31. **Airspeed.** Optionally, true airspeed or indicated airspeed may be transmitted. The airspeed source should be approved to output airspeed data. An air data computer meeting the minimum performance requirements of TSO-C106 is one acceptable source. Do not interface an airspeed source to the ADS-B that has not been approved for cockpit display.

32. **Version Number.** The applicable TSO minimum operational performance standard (MOPS) level is communicated through the version number, which is fixed at the time the ADS-B equipment is manufactured. Version two applies to ADS-B equipment that meets MOPS documents RTCA/DO-260B or RTCA/DO-282B. ADS-B equipment outputting version two or higher is required by 14 CFR § 91.227.

33. **Trajectory Change Report Capability.** This information is permanently set to zero in TSO-C166b or TSO-C154c equipment. No installation interface is required. Trajectory change reports are reserved for future use.
Appendix 2. Identifying ADS-B Position Sources

1. **Purpose.** This appendix defines the minimum requirements for position sources interfaced to ADS-B systems. The position source manufacturer should provide design data where appropriate so that the installer can properly interface the position source to the ADS-B system. Position source suppliers must ensure that any supplied data is incorporated into the article design, and changes to any documented characteristics result in a change to the part number.

2. **Organization.** This appendix includes general guidance that applies to all position sources, as well as GNSS specific guidance. The appendix also provides high level requirements for tightly coupled GNSS/IRU position sources and non-GNSS position sources. All references in this AC to TSO-C129, TSO-C145, TSO-C146, and TSO-C196 refer to any revision of the TSO.

3. **General Guidance for all Position Sources.** All ADS-B position sources should provide the following outputs.

 a. **Position.** The position source must provide a latitude and longitude output.

 b. **Horizontal Velocity.** The position source must output north/south and east/west velocities. We recommend the position source also output the velocity in a ground speed and ground track format.

 c. **Position Accuracy (Horizontal).** The position source must have a horizontal position accuracy output, and the output must have been qualified during the system’s TSO authorization or design approval. This output must describe the radius of a circle in the horizontal plane, with its center being at the true position which describes the region assured to contain the indicated horizontal position with at least 95% probability under fault-free conditions.

 d. **Position Accuracy (Vertical).** The position source should output a vertical position accuracy metric. The vertical position accuracy metric must have been qualified during the system’s TSO authorization or design approval. This output must describe the vertical position accuracy with 95% probability under fault-free conditions.

 e. **Position Integrity (Horizontal).** The position source must have a horizontal position integrity output qualified during the system’s TSO authorization or design approval. This integrity output should describe the radius of a circle in the horizontal plane, with its center being at the true position which describes the region assured to contain the indicated horizontal position with at least 99.99999% probability under fault-free avionics conditions. Position sources which degrade from a 99.99999% probability to a 99.999% probability (e.g. a coupled system after the loss of GNSS) can still be installed, however they won’t meet 14 CFR § 91.227 following the degradation. In this case, the position source must have a way of indicating the change to the ADS-B equipment. Additionally, if the change of probability is due to a change in position source, the new position source must meet all of the requirements in this appendix.

 (1) **Mode.** If interpretation of the integrity output of the position source can change due to a change in the position source mode, the position source must have a way of
communicating that change of mode to the ADS-B equipment. Additionally, the position source manufacturer should provide a description of the modes and a description of how the position source outputs the mode indication.

(2) **Validity Limit.** If the integrity value of the output cannot be trusted beyond a certain limit, indicate this limitation in the design documentation.

(3) **Integrity Fault.** The position source must be able to identify, and output, an indication of an integrity fault. This indication should occur within 8 seconds of output of an erroneous position. The position source manufacturer must provide information on how this integrity fault is output.

f. **Position Integrity (Probability).** The position source manufacturer must provide information describing the basis for the probability of exceeding the horizontal integrity containment radius. This basis must indicate the probability of exceeding the integrity containment radius as well as the sampling duration (per hour or per sample).

g. **Signal-in-Space Error Detection.** The position source should provide a means to detect a SIS error when the system uses a SIS. The probability of missed detection for a faulty SIS should be less than 1x10^{-3}. GNSS equipment provides the appropriate SIS error detection.

h. **Velocity Accuracy.** The position source should have a velocity accuracy output that was qualified in conjunction with the system’s TSO authorization or design approval. In lieu of a dynamic output, the position source manufacturer may demonstrate a worst case velocity accuracy that can be assumed based on testing. A test for GNSS position sources is contained in RTCA/DO-260B, appendix J and RTCA/DO-282B, appendix Q. The position source manufacturer may propose a test method for non GNSS sources or an alternate test for GNSS sources during the TSO authorization or design approval.

i. **Design Assurance.** The position source must support a major or greater failure effect. This includes software compliant with RTCA/DO-178B, Level C, and complex electronic hardware compliant with RTCA/DO-254, Level C. Because the broadcast position can be used by any other ADS-B equipped aircraft or by ATC, the provisions in AC 23.1309-1() that allow reduction in failure probabilities and design assurance level for aircraft under 6,000 pounds do not apply for the ADS-B system. The overall probability of a position source malfunction causing a position to be output which exceeds the output integrity radius must be less than 1x10^{-5} per hour.

j. **Geometric Altitude.** The position source must have a geometric altitude output. The geometric altitude must be referenced to the WGS-84 ellipsoid.

k. **Update Rate.** The position source must output a new position at least once per second. Faster position update rates reduce latency of the transmitted position and are encouraged.

l. **Position Source Latency.** The position source manufacturer must provide position source latency information. Specifically, the manufacturer must provide the amount of position
source total latency and uncompensated latency. Because the latency requirements are based on the entire ADS-B system, and not just the position source, the following position source latency targets are only guidelines. Position source uncompensated latency should be less than 200ms, compensated latency should be less than 500ms, and total latency should be less than 700ms.

Note: System latency requirements are described in paragraph 3-1 of this AC.

m. Position, Velocity, and Accuracy Time of Applicability. For each position the source outputs, a velocity, horizontal position accuracy metric and horizontal velocity accuracy metric must also be output. A horizontal position integrity metric must also be output, but its time of applicability may lag the position. See TSO-C145, TSO-C146, or TSO-C196 for additional information on the integrity time-to-alert.

n. Time Mark. GNSS position sources should output a UTC time mark with each position output. The time mark can be used by the ADS-B equipment to reduce uncompensated latency.

o. Availability. 14 CFR § 91.225 and 14 CFR § 91.227 do not define an availability requirement, however it is a significant operational factor when selecting the position source.

1. Analysis has shown the following estimated availabilities assuming the minimum threshold Global Positioning System (GPS) satellite constellation. The availability improves when the GPS constellation is full of operational satellites.

Figure 10. Estimated GNSS Availabilities (Minimum Threshold Constellation)

<table>
<thead>
<tr>
<th>Positioning Service (receiver standard)</th>
<th>Predicted Availability (ADS-B Compliance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS (TSO-C129) (SA On)</td>
<td>≥ 89.0%</td>
</tr>
<tr>
<td>GPS (TSO-C196) (SA Off)</td>
<td>≥ 99.0%</td>
</tr>
<tr>
<td>GPS/SBAS (TSO-C145/TSO-C146)</td>
<td>≥ 99.9%</td>
</tr>
</tbody>
</table>

2. The FAA plans to revert to back up surveillance systems, such as secondary surveillance radar (SSR) and procedural separation, whenever GNSS position sources that should have met 99.9% availability can no longer provide a NIC ≥ 7 and NACP ≥ 8. Reference figure 10 for predicted GNSS availability. The 99.9% availability threshold is based on radar equivalency. The FAA plans to implement a preflight availability determination system to assist operators in determining GNSS availability for ADS-B prior to flight, considering the GPS constellation that is available at that time.

4. GNSS Position Sources.

a. Integrity. All GNSS position sources must output a HIL or HPL that the ADS-B system can use to determine NIC.
b. **Integrity fault alerts.** GNSS position sources must provide design data on the maximum time the position source can take to indicate an integrity fault. If the fault indication is mode specific, data on all modes must be included. We recommend the indication of an integrity fault be provided within 8 seconds across all modes. All revisions of TSO-C145, TSO-C146, and TSO-C196 GNSS equipment meet this requirement. No revisions of TSO-C129 GNSS equipment meet this requirement without further qualification.

Note: ARINC interface standard 743A, *GNSS Sensor*, dated December 27, 2001, compliant receivers represent the condition where a satellite fault has been detected but the receiver was unable to exclude the faulted satellite by setting bit 11 of label 130. This bit must be interpreted to set the position invalid regardless of the indicated HIL or HPL.

c. **Position Integrity Limits.** Single frequency RAIM-based HPL computations have been designed to support navigation applications and provide an appropriate error bound down to approximately 0.1 nautical mile (nm). While HPL values significantly smaller than 0.1 nm can be output from single frequency GNSS sources, if the HPL value was computed using RAIM, it may not actually achieve the reported level of protection as there are error contributions that are no longer negligible and should be taken into consideration. Reference RTCA/DO-229D, appendix U and RTCA/DO-208, paragraph 1.4.2. Such error sources specifically include correlation of ionospheric errors across satellites, tropospheric delay compensation errors, multipath, and receiver noise and resolution errors. This issue is not unique to un-augmented GPS position sources, as all revisions of TSO-C145 and TSO-C146 GNSS position sources also calculate integrity based on RAIM when SBAS is not available. ADS-B capable position sources must provide design information to the installer that identifies the following:

1. Whether a TSO-C129 or TSO-C196 position source limits the HPL output to greater than 75 meters. If the position source does not limit its HPL output, the position source manufacturer should provide guidance to the ADS-B system installer to ensure the ADS-B equipment limits the NIC to ≤ 8. Although single frequency RAIM-based HPL values are only accurate down to approximately 0.1 nm, for ADS-B purposes, the position source only need limit the HPL to greater than 75 meters, because an HPL greater than 75 meters ensures the ADS-B equipment will only set a NIC of ≤ 8.

2. Whether a TSO-C145 or TSO-C146 position source limits the HPL in non-SBAS augmented modes to greater than 75 meters. If the position source does not limit the HPL output in non-augmented modes, the position source manufacturer should provide guidance to the ADS-B system installer to ensure the ADS-B equipment limits the NIC to ≤ 8 in non-augmented modes. The position source manufacturer should also provide instructions on how to determine the position source mode if appropriate.

d. **Horizontal Accuracy.** GNSS position sources should provide a HFOM output which was demonstrated during the position source’s design approval or during an installation approval. GNSS certified under all revisions of TSO-C145, C146, or C196 are required to
provide the HFOM output. TSO-C129 does not contain a horizontal position accuracy output requirement, however all TSO-C129 equipment must provide a HFOM output in order to be considered an ADS-B compliant position source.

e. **Geometric Altitude.** All GNSS position sources must output a geometric altitude. Geometric Altitude for ADS-B purposes is the height above the WGS-84 ellipsoid (i.e. it is not MSL). We recommend that the GNSS position source output geometric altitude as height-above-ellipsoid (HAE). Some GNSS position sources provide height above the geoid (HAG) instead of height above the ellipsoid (HAE). The position source manufacturer must provide data on whether the position source outputs HAE or HAG.

f. **Horizontal Velocity Accuracy.** The GNSS position source manufacturer must provide design data to assist the installer in setting the NAC\(_V\). The GNSS position source may output a horizontal velocity accuracy metric that was demonstrated in conjunction with a TSO authorization or design approval. For GNSS equipment that does not have an approved horizontal velocity accuracy metric available, the position source manufacturer must run the test procedures in RTCA/DO-260B, appendix J or RTCA/DO-282B, appendix Q to qualify the velocity accuracy. Vertical tests are not required for qualifying the horizontal velocity accuracy. Scaling the reported GNSS position accuracy (HFOM) is not an acceptable means to determine NAC\(_V\).

g. **Vertical Position Accuracy.** The GNSS should output vertical position accuracy. The vertical accuracy should specify a 95% probability bound on the reported vertical position. No revisions of TSO-C129 or TSO-C196 have vertical accuracy or integrity requirements, and TSO-C145 /146 only has vertical accuracy requirements for certain approach modes. None of the GNSS TSOs have a requirement to output the vertical accuracy data. If vertical position accuracy is output, it must have been qualified during design approval of the position source.

h. **Approach Mode Integrity.** Satellite Based Augmentation Systems (SBAS) equipment certified under any revision of TSO-C145 or TSO-C146 are required to have several modes of operation depending on the availability of augmentation. When operating in an augmented mode intended for LPV guidance approaches, the position source may determine a HPL based on a lateral error versus a horizontal error and an exposure time based on the duration of the approach versus flight hour. Reference RTCA DO-229D appendix J. If the position source outputs the HPL on lateral error and approach exposure time, we recommend that the position source inflate the HPL by 3% in approach modes to ensure the integrity is appropriately bounded.

Note: Ground Based Augmentation System (GBAS) equipment is required to comply with the GNSS or SBAS requirements for the output of position data. Although we do not address the interface of a GBAS differentially-corrected position source in this AC, it will have similar considerations in approach modes as SBAS.

i. **Ground Track Validity.** GNSS position sources can provide a ground track, however the GNSS ground track may become invalid below a certain velocity. Optimally, the position source
should either invalidate or remove the ground track when it is no longer valid. If the position source
does not invalidate the ground track or remove the ground track when it is potentially invalid, then the
position source manufacturer must provide information on velocity limitations for GNSS ground
track.

5. Tightly-Coupled GNSS/IRU Position Sources. This section provides high level guidance on
the issues that will need to be addressed to qualify a tightly-coupled GNSS/IRS for use in an
ADS-B system. You must propose to the FAA the method to approve a tightly-coupled
GNSS/IRU for use in an ADS-B system.

a. The tightly-coupled GNSS/IRS outputs must meet the requirements, including
validation, of either RTCA/DO-229(), appendix R, or RTCA/DO-316, appendix R.

b. Address the horizontal velocity accuracy.

c. The GNSS sensor should meet the minimum performance requirements for any revision
of TSO-C129, TSO-C145, TSO-C146, or TSO-C196. Additionally, the GNSS sensor should
meet all applicable GNSS requirements of this appendix as applicable.

d. Install the GNSS sensor(s) in accordance with AC 20-138(), *Airworthiness Approval of
Global Navigation Satellite System (GNSS) Equipment*.

e. 14 CFR § 91.227 requires a SIL = 3, which means the probability of exceeding the NIC
containment radius should be less than 1x10^-7 per hour or per sample. A tightly-coupled
GNSS/IRS that continues to provide the integrity containment radius based on a 1x10^-7
probability after loss of GNSS or GNSS RAIM is preferred.

(1) RTCA/DO-229D appendix R, paragraph 2.1 requires tightly-coupled systems to meet
two integrity limits. The integrity limit for the faulted satellite case is 1x10^-7. The integrity limit for
fault free (rare normal) case is 1x10^-5. RTCA/DO-229D appendix R, paragraph 2.1.1 acknowledges
that in tightly integrated systems that inertial coasting may cause the rare normal limit to be dominant
over the limit for the faulted conditions in times of poor satellite coverage. If the HPL output from the
tightly-coupled position source changes from the fault detection 1x10^-7 basis to the fault free 1x10^-5
basis the position source needs to indicate this change to the ADS-B equipment. We recommend the
position source use a 1x10^-7 integrity basis in all modes.

(2) If the integrity containment probability output of the tightly-coupled GNSS/IRS
position source changes from per hour to per sample following a loss of GNSS or a loss of GNSS
RAIM, then the position source must indicate this change to the ADS-B equipment.

(3) If the tightly-coupled GNSS/IRS scales the inertial integrity from 1x10^-5 to 1x10^-7,
the scaling must have been demonstrated during design approval of the position source. If the
inertial basis is per sample and is scaled to per hour, this scaling must have been demonstrated
during the position source design approval.
f. If a tightly coupled GNSS/IRS position source is intended to be used as an ADS-B position source after the loss of GNSS, include integrity coasting performance in the flight manual. Specifically address:

1. If inertial coasting will meet 14 CFR § 91.227 requirements, such as NACp = 8, NIC = 7, SIL = 3, and SDA = 2.

2. Estimated length of time following a loss of GNSS for which inertial coasting is expected to meet the 14 CFR § 91.227 requirements. The estimate should assume the system met minimum 14 CFR § 91.227 requirements just prior to the loss of GNSS or GNSS RAIM. This estimate will be helpful to operators in developing a means to assure that the system can meet 14 CFR § 91.227 requirements during predicted GNSS degradations.

6. Non-GNSS Position Sources. The FAA does not know of any currently available non-GNSS position sources that can meet the performance requirements of 14 CFR § 91.227. However, you may wish to integrate a backup ADS-B Out capability in the event of loss of GNSS. Such a backup is not required. We do not expect any ATC operational advantages for systems that provide a non-GNSS backup unless that backup capability meets the performance requirements of 14 CFR § 91.227. This section provides high level guidance on the issues that will need to be addressed to qualify a non-GNSS position source for use in an ADS-B system without regard to 14 CFR § 91.227 requirements. If you choose to integrate this capability, use the guidance below and propose to the FAA the method to approve a non-GNSS position source for use in an ADS-B system.

a. Distance Measuring Equipment (DME/DME).

1. The DME/DME RNAV system must meet the minimum performance requirements of TSO-C66, *Distance Measuring Equipment (DME) Operating within the Radio Frequency Range of 960-1215 Megahertz*.

2. There are no industry standards for use of a DME/DME system to determine position integrity or velocity accuracy. You must propose a method to derive these parameters.

3. The DME/DME system must only use DME facilities listed in the Airport/Facility Directory (A/FD).

4. The DME/DME system must only use operational DME facilities. The system must exclude non-operational facilities by checking the identification. Operational mitigations, such as manually excluding (blackballing) DME stations or any action that requires pilot action or monitoring of the DME/DME system, are not permissible for ADS-B qualified position sources.

5. Reasonableness Checks. The DME/DME system must incorporate reasonableness checking. Reference AC 90-100A for additional information on reasonableness checks.

b. VOR/DME. ADS-B position sources may not utilize Very High Frequency Omnidirectional Range (VOR) information. Do not interface any position solution that utilizes...
VOR information as the performance of the VOR cannot be assumed throughout the region in which the signal is received.

c. **INS/IRU Loosely Coupled with DME or GNSS.**

1. The GNSS equipment or DME equipment must meet the requirements in this appendix.

2. The INS/IRU equipment must meet 14 CFR part 121, appendix G.

3. The loosely coupled INS/IRU position source must provide all of the required position source outputs listed in this appendix. Qualify the outputs during installation approval of the ADS-B system. Velocity accuracy may be qualified and set statically. Update the position accuracy and position integrity metrics dynamically.

4. 14 CFR § 91.227 requires a SIL = 3, which means the probability of exceeding the NIC containment radius should be less than 1×10⁻⁷ per hour or per sample. A GNSS/IRS that continues to provide the integrity containment radius based on a 1×10⁻⁷ probability after loss of GNSS or GNSS RAIM is preferred. Potential errors, caused by GNSS updating prior to the loss of GNSS, must continue to be bounded.

 a. If the integrity containment probability output of a loosely coupled GNSS/IRS position source changes from 1×10⁻⁷ to 1×10⁻⁵ following a loss of GNSS or a loss of GNSS RAIM, then the position source must relay this change to the ADS-B equipment. Note, the overall system time to transmit a change in SIL must be 10 seconds or less.

 b. If the integrity containment probability output of a loosely coupled GNSS/IRS position source changes from per hour to per sample following a loss of GNSS or a loss of GNSS RAIM, then the position source must relay this change to the ADS-B equipment.

7. **Future Position Sources.** It is expected that future position sources such as dual frequency GPS and GPS/Galileo sources will be acceptable position sources for ADS-B and meet the performance requirements of 14 CFR § 91.227. Future revisions of this AC will address new position source technology when it becomes available.
Appendix 3. Latency Analysis

1. Purpose. The purpose of this appendix is to provide guidelines on accomplishing a latency analysis on your ADS-B system.

2. Analysis. Accomplish the analysis by determining the applicable latencies for each component and totaling all of the individual component latencies. You must include all sources of position latency, including, but not limited to the position source, intermediary devices between the position source and ADS-B equipment, and the ADS-B equipment. Use the following guidelines to determine latency for each component:

 a. Position Source Latency Considerations. In general, the latency information should be generated by the position source manufacturer and presented as part of the latency analysis. The latency measurement should begin at the time-of-measurement (TOM) and end when the position is output from the position source.

 (1) TSO-C145, TSO-C146, and TSO-C196 GNSS. Use the TSO latency standards in the latency analysis or use actual latency information generated by the GNSS manufacturer to determine the position source maximum total latency and uncompensated latency. If the GNSS equipment is classified as Class 3 per any revision of TSO-C145, there are tighter latency standards for the localizer performance with vertical guidance (LPV) modes. If the Class 3 standard is implemented across all modes, the tighter latency numbers may be used, however if the tighter latency standards are only met when in approach mode, use the worst-case latency across all modes.

 (2) TSO-C129 GNSS. There are no latency standards for any revision of TSO-C129 GNSS equipment. Latency information must be generated by the GNSS manufacturer and included as part of the latency analysis.

 (3) Tightly-Coupled GNSS/Inertial. There are no latency standards for tightly-coupled GNSS/Inertial equipment. Total and uncompensated latency information should be generated by the position source manufacturer and presented as part of the latency analysis. Base the latency analysis on the update rate of the inertial sensor, as 10 or 20 second GNSS updates to the inertial sensor are not impacting the latency of the position output. However, the GNSS update latency does affect the position accuracy and should be appropriately reflected in the position source accuracy output.

 (4) Other Position Sources. Total and uncompensated latency information should be generated by the position source manufacturer and included as part of the latency analysis.

 b. Intermediary Device. Intermediary devices are typically data concentrators. The latency information should be generated by the intermediary device manufacturer and presented as part of the latency analysis. If the intermediary device latency is variable, use the worst-case latency.

 c. ADS-B Equipment. Use the TSO-C166b and TSO-C154c latency standards for the latency analysis or use the actual latency information generated by the ADS-B equipment manufacturer. TSO-C166b and TSO-C154c require the uncompensated latency of the ADS-B equipment to be less than 100ms.
d. **Asynchronous Delay.** Total latency analysis must include the maximum asynchronous delay caused by position updates arriving at the ADS-B equipment out-of-synch with when the ADS-B system transmits the position. This delay is a factor of the position source update rate rather than the ADS-B equipment transmission rate. For example, a 1 Hz position source could provide a position update immediately after an ADS-B position transmission. This position would be extrapolated, up to 1 second, until the next position update arrives from the position source. Thus, a 1 hertz position source can introduce 1 second of total latency. This 1 second must be included in the total latency calculation.

3. **Equipment Latency Budget.** There are no individual component latency requirements, however we recommend the following guidelines:

 a. **Position Source.** We recommend using position sources where the latency of the position, velocity, and position accuracy metrics are less than or equal to 500ms between the position time of measurement and the position time of applicability, and that the position is output in less than 200ms after the position time of applicability.

 Note: All revisions of TSO-C145, TSO-C146, and TSO-C196 equipment meet these recommendations.

 b. **Position Source to ADS-B Interface.** Directly connecting the position source to the ADS-B equipment is the preferred method of installation. Alternately, if this architecture is not used, we recommend that any latency introduced between the position source output and the ADS-B equipment input be less than 100ms. (Reference RTCA/DO-260B, appendix U.)

 c. **ADS-B Equipment.** The latency requirements for the ADS-B equipment are included in TSO-C166b and TSO-C154c and allow for the ADS-B equipment to introduce no more than 100ms of uncompensated latency. TSO-C166b or TSO-C154c are required by 14 CFR § 91.225.

4. **General Latency Issues.**

 a. **Recommendations for Reducing Latency.**

 (1) Directly connect the position source to the ADS-B equipment.

 (2) Use a TSO-C145, TSO-C146, or TSO-C196 position source (any revision).

 (3) Use a position source that provides position updates at greater than 1Hz.

 (4) Use the GNSS time mark in TSO-C166b systems to reduce position source and intermediary device uncompensated latency. (Use of the GNSS time mark is required by TSO-C154c.)

 b. **Latency Applicability.** The 2.0 second total latency requirement applies to the aircraft position (latitude and longitude), position accuracy metric (NACₚ), velocity, and the velocity accuracy.
The 0.6 second uncompensated latency requirement only applies to the aircraft position (latitude and longitude.)

c. **Mean Latency Versus Maximum Latency.** In instances where the latency is variable, use the worst-case latency under fault free conditions in the analysis. Variable latency, for example, can occur due to variance in loading of a data concentrator or to the asynchronous nature of a GNSS to ADS-B interface. As the applicant, you must propose to the FAA how to deal with variable latencies introduced by intermediary devices, such as data concentrators.

d. **Compensating for Interface Latency in Unsynchronized Systems.** It is acceptable to install ADS-B equipment which compensates for latency that occurs outside of the ADS-B equipment, even if the position source and ADS-B equipment are not time synchronized. Establishing the proper corrections for external latency is problematic because the TSO-C166b equipment may be interfaced to numerous different aircraft architectures. These architectures could include different position sources, with different latencies, as well as different data concentrators with different delays. To interface unsynchronized ADS-B equipment which compensates for external latencies, the ADS-B equipment manufacturer must provide a list of the acceptable equipment and the acceptable architectures. Typically this type of ADS-B equipment will only be installed in closely-integrated architectures. You may not attempt to integrate ADS-B equipment that compensates for external latencies unless the ADS-B equipment manufacturer has expressly documented the installation architecture and design data is available for each component. The total amount of time that can be used for compensation is still limited by the requirement to limit total latency to within 2.0 seconds.

e. **Overcompensating.** It is possible for compensation algorithms to “over compensate” for the effects of latency, essentially transmitting a position that is out in front of the actual aircraft position rather than behind the actual aircraft position. This type of system is acceptable as long as the transmitted position is no further ahead than 200ms. (Reference RTCA/DO-260B, appendix U).

f. **Extrapolation During Loss of Position Data.** TSO-C166b equipment compliant with RTCA/DO-260B, paragraphs 2.2.3.2.3.7.4 and 2.2.3.2.3.8.4, allows extrapolation of the position for up to two seconds when the position data is not available from the position source. This allowance is in case position data is lost for a single sample and it does not have to be considered in the total latency calculation, provided it is a non-normal condition. If the position data is lost, several position updates could exceed the latency requirement, but the position would then be invalidated within 2 seconds per TSO-C166b.

g. **Coordinated Universal Time (UTC) Epoch Synchronization.** The position transmitted from the ADS-B equipment may be aligned with a UTC epoch. TSO-C154c requires UAT systems to extrapolate the position to the 1.0 second or 0.2 second UTC epoch. TSO-C166b allows 1090ES systems to extrapolate to the 0.2 second UTC epoch or transmit asynchronously. In order to synchronize the position output with the UTC epoch the position source needs to provide a time mark. The ADS-B equipment uses this time mark to extrapolate the position to the UTC epoch. Typically the time mark will be from a GNSS position source. Implementation of the time synchronization in the 1090ES systems will help minimize uncompensated latency.
h. Latency Points of Measurement. Latency is defined as the time between when the position is measured by the position source to when it is transmitted by the ADS-B equipment.

1. **Time of Measurement (TOM).** The latency analysis starts at the position source TOM. The position source TOM for GNSS sources is the time when the last GNSS signal used to determine the position arrives at the aircraft GNSS antenna. TOM for an inertial position source or a GNSS aided inertial position source is the time of the last accelerometer measurement. TOM for an area navigation (RNAV) system using multiple distance measuring equipment (DME) signals would be the time the last DME signal arrives at the aircraft’s DME antenna.

 Note: To demonstrate compliance with 14 CFR § 91.227 you must calculate latency from the position source time of measurement. Do not calculate latency from the position source time of applicability, as defined in DO-260B and DO-282B.

2. **Transmit Time-of-Applicability.** The transmit time is the time which the ADS-B system broadcasts the position. The transmitted position’s time-of-applicability for synchronized systems is the appropriate UTC epoch. The transmitted position’s time-of-applicability for unsynchronized systems is the actual time the ADS-B equipment begins transmission of the message that contains the position.

 Note: Synchronized ADS-B systems randomly vary the position transmission around the UTC epoch to avoid interference with other ADS-B transmitters. This randomization should not be included in the latency analysis.

3. **Minor Changes to Position Source Type Design.** If the ADS-B installation relies on position source latency performance, versus a TSO latency standard, the ADS-B system installer must update the ICAW for the position source with a process that ensures continued airworthiness of the ADS-B system following design changes to the position source.

4. **Latency Analysis Example.** This example uses a GNSS meeting the minimum performance requirements of TSO-C145 (any revision) directly connected to TSO-C166b ADS-B equipment. This installation is a T = 0 installation, thus it is unsynchronized. The example in figure 11 is considered a compliant architecture.
Figure 11. Latency Analysis Example

<table>
<thead>
<tr>
<th></th>
<th>Uncompensated Latency</th>
<th>Compensated Latency</th>
<th>Total Latency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Source</td>
<td>≤ 200 ms</td>
<td>≤ 500 ms</td>
<td>≤ 700 ms</td>
<td></td>
</tr>
<tr>
<td>Position Source to ADS-B Interface</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Directly connected</td>
</tr>
<tr>
<td>ADS-B Equipment</td>
<td>≤ 100</td>
<td>Note 1</td>
<td>≤ 100 ms</td>
<td></td>
</tr>
<tr>
<td>Asynchronous Delay</td>
<td>0</td>
<td>≤ 1.0 sec</td>
<td>≤ 1.0 sec</td>
<td>1 Hz position source</td>
</tr>
<tr>
<td>Total</td>
<td>≤ 300 ms</td>
<td>≤ 1.5 sec</td>
<td>≤ 1.8 sec</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: ADS-B equipment compensated latency is bounded by the asynchronous nature of the position source delivery and ADS-B system transmission. Thus ADS-B equipment compensated latency is included in the asynchronous delay row.

Note 2: The latency between the position source time of measurement and the position source time-of-applicability is required to be compensated by all revisions of TSO-C145, TSO-C146, and TSO-C196.
Appendix 4. Flight Manual Supplement Example

Installation Center/Repair Station Model XXX ADS-B
123 Fourth Street ADS-B System
Anytown, USA

FAA APPROVED AIRCRAFT FLIGHT MANUAL SUPPLEMENT
ABC MODEL XXX ADS-B OUT SYSTEM

AIRPLANE MAKE:
AIRPLANE MODEL:
AIRPLANE SERIAL NO.:

This document must be carried in the aircraft at all times. It describes the operating procedures for the ABC Model XXX ADS-B Out system when it has been installed in accordance with <manufacturer's installation manual number and date>.

For aircraft with an FAA Approved Airplane Flight Manual, this document serves as the FAA Approved ABC Model XXX ADS-B Flight Manual Supplement. For aircraft that do not have an approved flight manual, this document serves as the FAA Approved ABC Model XXX ADS-B Supplemental Flight Manual.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual dated <insert date> only in those areas listed herein. For limitations, procedures, and performance information not contained in this document, consult the basic Aircraft Flight Manual.

FAA APPROVED

Title
Office
Federal Aviation Administration
City, State

FAA Approved
Date: __________

Page <> of <>
Installation Center/Repair Station
123 Fourth Street
Anytown, USA

Model XXX ADS-B
ADS-B System

Table of Contents

Section ... Page
1 General...<>
2 Limitations.....................................<>
3 Emergency/Abnormal Procedures…<>
4 Normal Procedures..........................<>
5 Performance...................................<>
6 Weight and Balance.........................<>
7 System Description.........................<>
Installation Center/Repair Station Model XXX ADS-B
123 Fourth Street ADS-B System
Anytown, USA

SECTION 1 - GENERAL

Include the following statement in the general section of the flight manual:

The installed ADS-B Out system has been shown to meet the equipment requirements of
14 CFR § 91.227.

SECTION 2 - LIMITATIONS

<Specify any limitations applicable to the particular installation.>

SECTION 3 - EMERGENCY/ABNORMAL PROCEDURES

No Change

FAA Approved
Date: ________
Installation Center/Repair Station
123 Fourth Street
Anytown, USA

SECTION 4 - NORMAL PROCEDURES

1. <Describe the ADS-B system annunciations.>

2. <Describe procedures for pilot entry of the Mode 3/A code, IDENT, call sign, and emergency codes.>

3. <For systems where the transponder and ADS-B are separate, describe the need for dual input of the Mode 3/A code, IDENT, and emergency codes.>

4. <Describe the procedures for disabling the ADS-B system. The flight manual must address the ramifications of disabling the ADS-B system, including the ramifications to the transponder and TCAS II if disabling the ADS-B Out also disables the transponder or TCAS II.>

5. <Include any other normal operating procedures necessary.>

SECTION 5 - PERFORMANCE

No Change

SECTION 6 - WEIGHT AND BALANCE

<Refer to revised weight and balance data, if applicable.>

SECTION 7 - SYSTEM DESCRIPTION

<Provide a brief description of the system, its operation, installation, etc.>

FAA Approved
Date: ________
FAA Approval
Appendix 5. Definitions and Acronyms

1. Definitions. The following definitions are specific to this AC and may differ from definitions contained in other references.

 a. **Automatic Dependent Surveillance Broadcast (ADS-B).** ADS-B is an advanced surveillance technology where ADS-B Out equipped aircraft share position, altitude, velocity, and other information with ATC and other appropriately equipped aircraft.

 b. **ADS-B In.** Receipt, processing, and display of other aircraft’s ADS-B transmissions. ADS-B In is necessary to utilize airborne applications.

 c. **ADS-B Out.** Transmission of an aircraft’s position, altitude, velocity, and other information to other aircraft and ATC ground based surveillance systems.

 d. **Automatic Dependent Surveillance - Rebroadcast (ADS-R).** Retransmission of UAT ADS-B messages from aircraft on the 1090ES link and 1090ES messages on the UAT link. ADS-R ensures aircraft equipped with different links can receive messages from one another when equipped with ADS-B In.

 e. **Area Navigation (RNAV).** A method of navigation that permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

 f. **Flight Information System - Broadcast (FIS-B).** FIS-B is a ground broadcast service provided over the UAT data link. The FAA FIS-B system provides pilots and flight crews of properly equipped aircraft with a cockpit display of certain aviation weather and aeronautical information.

 g. **Flight Manual.** A generic term used throughout this AC to represent the airplane flight manual, rotorcraft flight manual, AFM supplement, or RFM supplement.

 h. **Galileo.** Galileo is a European satellite-based radio navigation system being developed that will provide a global positioning service.

 i. **Global Navigation Satellite System (GNSS).** The generic term for a satellite navigation system, such as the Global Positioning System (GPS), that provides autonomous worldwide geo-spatial positioning and may include local or regional augmentations.

 k. **GNSS Time of Applicability.** The time that the position output from the GNSS sensor is applicable.
1. **GNSS Time of Measurement (TOM).** TOM for GNSS sources is the time when the last GNSS signal used to determine the position arrives at the aircraft GNSS antenna.

2. **Horizontal Figure of Merit (HFOM).** The radius of a circle in the horizontal plane with its center being at the true position, that describes the region assured to contain the indicated horizontal position with at least 95% probability under fault-free conditions at the time of applicability.

3. **Horizontal Protection Level Fault Detection (HPLFD).** The radius of a circle in the horizontal plane, with its center being at the true position, that describes the region assured to contain the indicated horizontal position. It is a horizontal region where the missed alert and false alert requirements are met for the chosen set of satellites when autonomous fault detection is used. It is a function of the satellite and user geometry and the expected error characteristics, it is not affected by actual measurements. Its value is predictable given reasonable assumptions regarding the expected error characteristics.

4. **Horizontal Protection Level Fault Free (HPLFF).** Fault Free horizontal protection level. See RTCA/DO-229D appendix R.

5. **Position Source.** The on-board avionics equipment that provides the latitude, longitude, geometric altitude, velocity, position and velocity accuracy metrics, and position integrity metric. Additionally the position source may provide the vertical rate parameters.

6. **Receiver Autonomous Integrity Monitoring (RAIM).** Any algorithm that verifies the integrity of the position output using GPS measurements, or GPS measurements and barometric aiding, is considered a RAIM algorithm. An algorithm that uses additional information (e.g., multi-sensor system with inertial reference system) to verify the integrity of the position output may be acceptable as a RAIM-equivalent. Within this AC, the term RAIM is a synonym for aircraft-based augmentation system (ABAS) and is used to refer to both RAIM and RAIM-equivalent algorithms.

7. **Satellite-Based Augmentation System (SBAS).** A wide coverage augmentation system in which the user receives augmentation information from a satellite-based transmitter. In the U.S., this is referred to as wide area augmentation system (WAAS).

8. **Selective Availability (SA).** A protection technique employed by the Department of Defense which degraded GPS accuracy. Selective availability was discontinued on May 1, 2000.

9. **Traffic Information Service - Broadcast (TIS-B).** TIS-B is a ground broadcast service provided from an ADS-B ground system network over the UAT and 1090ES links which provides position, velocity, and other information on traffic which is detected by a secondary surveillance radar, but is not transmitting an ADS-B position.
u. **Total Latency.** The total time between when the position is measured by the position source (GNSS Time of Measurement for GNSS systems) and when the position is transmitted from the aircraft (ADS-B Time-of-Transmission).

v. **Uncompensated Latency.** Any latency in the ADS-B system which is not compensated through extrapolation. Uncompensated latency can be represented as the difference between the time of applicability of the broadcast position and the actual time-of-transmission.

w. **Wide Area Augmentation System (WAAS).** The U.S. implementation of SBAS.
2. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 CFR</td>
<td>Title 14 of the Code of Federal Regulations</td>
</tr>
<tr>
<td>A/V</td>
<td>Aircraft/Vehicle</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>ACO</td>
<td>Aircraft Certification Office</td>
</tr>
<tr>
<td>ADIRS</td>
<td>Air Data And Inertial Reference System</td>
</tr>
<tr>
<td>ADS-B</td>
<td>Automatic Dependent Surveillance - Broadcast</td>
</tr>
<tr>
<td>ADS-R</td>
<td>Automatic Dependent Surveillance - Rebroadcast</td>
</tr>
<tr>
<td>A/FD</td>
<td>Airport/Facility Directory</td>
</tr>
<tr>
<td>AFM</td>
<td>Airplane Flight Manual</td>
</tr>
<tr>
<td>AFMS</td>
<td>Airplane Flight Manual Supplement</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>AML</td>
<td>Approved Model List</td>
</tr>
<tr>
<td>ANSP</td>
<td>Air Navigation Service Provider</td>
</tr>
<tr>
<td>ARP</td>
<td>Aerospace Recommended Practice</td>
</tr>
<tr>
<td>ASDE-X</td>
<td>Airport Surface Detection Equipment, Model X</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATCRBS</td>
<td>Air Traffic Control Radar Beacon System</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FD</td>
<td>Fault Detection</td>
</tr>
<tr>
<td>FDE</td>
<td>Fault Detection and Exclusion</td>
</tr>
<tr>
<td>FHA</td>
<td>Functional Hazard Assessment</td>
</tr>
<tr>
<td>FIS-B</td>
<td>Flight Information Services - Broadcast</td>
</tr>
<tr>
<td>FL</td>
<td>Flight Level</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Modes And Effects Analysis</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>GBAS</td>
<td>Ground Based Augmentation System</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GVA</td>
<td>Geometric Vertical Accuracy</td>
</tr>
<tr>
<td>HAE</td>
<td>Height Above Ellipsoid</td>
</tr>
<tr>
<td>HAG</td>
<td>Height Above Geoid</td>
</tr>
<tr>
<td>HFOM</td>
<td>Horizontal Figure of Merit</td>
</tr>
<tr>
<td>HIL</td>
<td>Horizontal Integrity Level</td>
</tr>
<tr>
<td>HPL</td>
<td>Horizontal Protection Level</td>
</tr>
<tr>
<td>HUL</td>
<td>Horizontal Uncertainty Level</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ICAW</td>
<td>Instructions for Continued Airworthiness</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>IRU</td>
<td>Inertial Reference Unit</td>
</tr>
<tr>
<td>LODA</td>
<td>Letter of Design Approval</td>
</tr>
<tr>
<td>LPV</td>
<td>Localizer Performance with Vertical Guidance</td>
</tr>
<tr>
<td>m/s</td>
<td>Meters per second</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>MOPS</td>
<td>Minimum Operational Performance Standards</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NACP</td>
<td>Navigational Accuracy Category for Position</td>
</tr>
<tr>
<td>NACV</td>
<td>Navigational Accuracy Category for Velocity</td>
</tr>
<tr>
<td>NAS</td>
<td>National Aerospace System</td>
</tr>
<tr>
<td>NIC</td>
<td>Navigational Integrity Category</td>
</tr>
<tr>
<td>NICBARO</td>
<td>Barometric Altitude Integrity Code</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Mile</td>
</tr>
<tr>
<td>POA</td>
<td>Position Offset Applied</td>
</tr>
<tr>
<td>RA</td>
<td>Resolution Advisory</td>
</tr>
<tr>
<td>RAIM</td>
<td>Receiver Autonomous Integrity Monitoring</td>
</tr>
<tr>
<td>RFM</td>
<td>Rotorcraft Flight Manual</td>
</tr>
<tr>
<td>RFMS</td>
<td>Rotorcraft Flight Manual Supplement</td>
</tr>
<tr>
<td>RGL</td>
<td>Regulatory Guidance Library</td>
</tr>
<tr>
<td>RVSM</td>
<td>Reduced Vertical Separation Minimum</td>
</tr>
<tr>
<td>SA</td>
<td>Selective Availability</td>
</tr>
<tr>
<td>SBAS</td>
<td>Satellite Based Augmentation System</td>
</tr>
<tr>
<td>SDA</td>
<td>System Design Assurance</td>
</tr>
<tr>
<td>SIL</td>
<td>Source Integrity Level</td>
</tr>
<tr>
<td>SIL-SUPP</td>
<td>SIL Supplement</td>
</tr>
<tr>
<td>SIS</td>
<td>Signal-in-Space</td>
</tr>
<tr>
<td>SSR</td>
<td>Secondary Surveillance Radar</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental Type Certificate</td>
</tr>
<tr>
<td>TC</td>
<td>Type Certificate</td>
</tr>
<tr>
<td>TCAS II</td>
<td>Traffic Alert and Collision Avoidance System</td>
</tr>
<tr>
<td>TIS-B</td>
<td>Traffic Information Service - Broadcast</td>
</tr>
<tr>
<td>TOA</td>
<td>Time of Applicability</td>
</tr>
<tr>
<td>TOM</td>
<td>Time of Measurement</td>
</tr>
<tr>
<td>TOT</td>
<td>Time of Transmission</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
<tr>
<td>TSOA</td>
<td>Technical Standard Order Authorization</td>
</tr>
<tr>
<td>UAT</td>
<td>Universal Access Transceiver</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VFOM</td>
<td>Vertical Figure of Merit</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Range</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WGS-84</td>
<td>World Geodetic System 1984</td>
</tr>
</tbody>
</table>
Appendix 6. Related Documents

2. Advisory Circulars. Order copies of Advisory Circulars from the U.S. Department of Transportation, Subsequent Distribution Office, M-30, Ardmore East Business Center, 3341 Q 75th Avenue, Landover, MD 20785. You can also get copies from our website at www.faa.gov/regulations_policies/advisory_circulars/.
 a. AC 20-131(), *Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II) and Mode S Transponders*
 b. AC 20-138(), *Airworthiness Approval of Global Navigation Satellite System (GNSS) Equipment*
 c. AC 20-151(), *Airworthiness Approval of Traffic Alert and Collision Avoidance Systems (TCAS II) Version 7.0 & 7.1 and Associated Mode S Transponders*
 d. AC 21-40(), *Guide for Obtaining a Supplemental Type Certificate*
 e. AC 23.1309-1(), *System Safety Analysis and Assessment for Part 23 Airplanes*
 f. AC 25-1309-1(), *System Design and Analysis*
 g. AC 27-1(), *Certification of Normal Category Rotorcraft*
 h. AC 29-2(), *Certification of Transport Category Rotorcraft*
 i. AC 43-6(), *Altitude Reporting Equipment and Transponder System Maintenance and Inspection Practices*

3. Technical Standard Orders (TSO). You can find a current list of technical standard orders on the FAA Internet website at www.airweb.faa.gov/rgl. You will also find the TSO Index of Articles at the same site.
 a. TSO-C5, *Direction Instrument, Non-Magnetic (Gyroscopically Stabilized)*
 b. TSO-C6, *Direction Instrument, Magnetic (Gyroscopically Stabilized)*
 c. TSO-C8(), *Vertical Velocity Instruments*
d. TSO-C10(), **Altimeter, Pressure Actuated, Sensitive Type**

e. TSO-C66(), **Distance Measuring Equipment (DME) Operating Within the Radio Frequency Range of 960-1215 Megahertz**

f. TSO-88(), **Automatic Pressure Altitude Reporting Code-Generating Equipment**

g. TSO-C106(), **Air Data Computer**

h. TSO-C112(), **Air Traffic Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment**

i. TSO-C119(), **Traffic Alert and Collision Avoidance System (TCAS) Airborne Equipment**

j. TSO-C129(), **Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)**

k. TSO-C145(), **Airborne Navigation Sensors Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS)**

l. TSO-C146(), **Stand-Alone Airborne Navigation Equipment Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS)**

m. TSO-C154c, **Universal Access Transceiver (UAT) Automatic Dependent Surveillance Broadcast (ADS-B) Equipment Operating on the Frequency of 978 MHz**

n. TSO-C166b, **Extended Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B) Equipment Operating on the Radio Frequency of 1090 Megahertz (MHz)**

o. TSO-C196(), **Airborne Supplemental Navigation Sensors for Global Positioning System Equipment Using Aircraft-Based Augmentation**

a. RTCA/DO-260B, **Minimum Operational Performance Standards for 1090 MHz Automatic Dependent Surveillance-Broadcast (ADS-B)**

b. RTCA/DO-282B, **Minimum Operational Performance Standards for Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B)**

c. RTCA/DO-208, **Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using Global Positioning System (GPS)**

e. RTCA/DO-316, *Minimum Operational Performance Standards (MOPS) for Global Positioning System/Aircraft Based Augmentation System Airborne Equipment*

f. RTCA/DO-178B, *Software Considerations in Airborne Systems and Equipment Certification*

g. RTCA/DO-254, *Design Assurance Guidance for Airborne Electronic Hardware*

 a. ARINC 738A, *Air Data and Inertial Reference System (ADRS)*

 b. ARINC 743A, *GNSS Sensor*

 a. SAE ARP 4754, *Certification Considerations for Highly-Integrated or Complex Aircraft Systems*

 b. SAE ARP-4761, *Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment*