DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION

A12EA
Revision 46

Gulfstream
G-1159
G-1159A
G-1159B
G-IV
GV
GV-SP
GIV-X
February 22, 2016

TYPE CERTIFICATE DATA SHEET NO. A12EA

This data sheet which is part of Type Certificate No. A12EA prescribes conditions and limitations under which the product for which the type certificate was issued meets the airworthiness requirements of the Civil Air Regulations and Federal Aviation Regulations.

Type Certificate Holder: Gulfstream Aerospace Corporation
500 Gulfstream Road
Savannah, Georgia 31408

Engines
2 Rolls Royce Spey RB (163) 511-8 (Type Certificate E2EU)

Fuel
Kerosene
American
ASTM D 1655-78 Jet A
ASTA D 1655-78 Jet A-1
I.A.T.A. 1988: Kerosene type
MIL-T-83133 Grade JP-8
British
D Eng. R.D. 2453 Issue 5 (2)
D Eng. R.D. 2494 Issue 10
Canadian
CAN/CGCB 3.23-M86
CIS T-1, TS-1 & RT (GOST 10227-86)
T-7, (GOST 12308-66)
French
AIR 3405/C
Romanian
(3754/73 CS-3))
STAS 5639

JP-4 Wide Cut Type (See NOTE 5)
American
ASTM D 1655-89 Jet B
MIL-T-5624N Grade JP-4
I.A.T.A. 1987: JP.4 type
British
D Eng. R.D. 2454 Issue 4 (2)
D Eng. R.D. 2486 Issue 9
Canadian
CAN/CGSB 3.22 M86
CIS T-2 (GOST 10027-86)
French
AIR 3407/B
German
TL 9130-006 Issue 6

Page No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rev No. 46 30 16 16 13 30 15 16 13 30 19 19 16 30 19 16 16 43 30 29
Page No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Rev No. 17 19 26 26 26 26 26 43 26 46 46 46 46 46 46 27 26 43 28 42 28
Page No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Rev No. 23 45 27 30 25 44 44 36 44 36 29 38 38 38 46 35 45 45 46 46
Fuel (con’t) JP-5 High Flash-Point Type
American MIL-T-5624N Grade JP-5
British D Eng. R.D. 2452 Issue 2 (3)
D Eng. R.D. 2498 Issue 7
Canadian 3-GP-24Ma
French AIR 3404/C
German TL 9130-007 Issue 4

Fuel shall conform to the specification as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Oil Castrol 3C and 325
Aeroshell Turbo Oil 390 and 500
Esso/Exxon 2380
Mobil Jet Oil II
Chevron Jet Engine Oil 5
Caltex RPM Jet Engine Oil 5
Texaco S.A.T.O. 7730

NOTE: Mixing of oils is not recommended for APU.
Oil shall conform to the specification as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Engine Limits Static Thrust (std. day) S.L.
Takeoff (5 min.) 11,400 lb.
Maximum continuous 10,940 lb.

Maximum permissible engine rotor operating speeds:
N1 (low compressor) (106.6%) 8,950 rpm
N2 (high compressor) (100.1%) 12,500 rpm

Maximum permissible temperatures:
Turbine outlet gas (Trimmer Resistors, Inc.)
Takeoff (5 min.) 585°C
Maximum continuous 540°C
Momentary maximum during starts and relights 570°C
Maximum with reverse thrust (30 second limit) 490°C
Maximum over-temperature (20 second limit) 610°C

Engines with S.B. Sp 77-43
(20 second limit) 615°C
(120 second limit) 595°C

Oil inlet 100°C
Oil inlet (15 min. limit) 120°C

Fuel inlet temperature to engine high pressure pump 90°C
Fuel inlet temperature (15 min. limit) 110°C

Maximum Air Bleed Extraction
(Percent of no bleed mass flow)
Maximum engine high pressure bleed 2.45%
Maximum engine low pressure bleed 3.65%

Auxiliary Power Unit (APU) AirResearch GTCP-36-6: S/N 1 thru 248 and 775
Maximum permissible exhaust gas temperature 700°C
Maximum rotor speed - all conditions 110%
APU alternator load rating 20Kva
APU rated output shaft power 10hp
(with 50 lb. per min. bleed air and ambient temperature of 113°F)
APU (con’t)

AirResearch GTCP-36-100G: S/N 250 thru 299, except 252

Maximum permissible exhaust gas temperature -
- Up to 60% rpm during start 988°C
- 60% - 100% during start 821°C to 732°C (linear decrease)
- Running 732°C

Maximum rotor speed - all conditions 110%
APU alternator load rating 20Kva
(with 46.6 lb. per min. bleed air and ambient temperature of 103°F) 50hp

Airspeed Limits (CAS)

<table>
<thead>
<tr>
<th>V_{mo} (Maximum operating)</th>
<th>Sea level to 24,100 ft.</th>
<th>423 mph</th>
<th>367 knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{mo} = .85 @ 24,100 ft and above</td>
<td>Sea level to 28,100 ft.</td>
<td>389 mph</td>
<td>338 knots</td>
</tr>
<tr>
<td>V_{a} (Maneuvering)</td>
<td>245 mph</td>
<td>213 knots</td>
<td></td>
</tr>
<tr>
<td>V_{sb} (Speed brake)</td>
<td>196 mph</td>
<td>170 knots</td>
<td></td>
</tr>
<tr>
<td>V_{sb} = .85 @ 28,100 ft and above</td>
<td>(Flaps down to 39°)</td>
<td>196 mph</td>
<td>170 knots</td>
</tr>
<tr>
<td></td>
<td>(Flaps down to 20°)</td>
<td>253 mph</td>
<td>220 knots</td>
</tr>
<tr>
<td></td>
<td>(Flaps down to 10°)</td>
<td>288 mph</td>
<td>250 knots</td>
</tr>
<tr>
<td>V_{lo} (Landing gear operation)</td>
<td>259 mph</td>
<td>225 knots</td>
<td></td>
</tr>
<tr>
<td>V_{le} (Landing gear extended)</td>
<td>288 mph</td>
<td>250 knots</td>
<td></td>
</tr>
<tr>
<td>V_{mca} (Minimum control air)</td>
<td>117 mph</td>
<td>102 knots</td>
<td></td>
</tr>
<tr>
<td>V_{ll} (Landing light operation)</td>
<td>288 mph</td>
<td>250 knots</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Operating Altitude 43,000 feet (airplanes modified by Aircraft Service Change 299 are approved to 45,000 feet.)

Maximum Weight (lb.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru 82 & 775</td>
<td>- -</td>
<td>38,000</td>
<td>58,000</td>
<td>57,500</td>
<td>51,430</td>
</tr>
<tr>
<td>1 thru 82 & 775</td>
<td>10A & 41</td>
<td>39,000</td>
<td>60,000</td>
<td>59,500</td>
<td>55,000</td>
</tr>
<tr>
<td>83 thru 100</td>
<td>- -</td>
<td>39,000</td>
<td>60,000</td>
<td>59,500</td>
<td>55,000</td>
</tr>
<tr>
<td>1 thru 100 & 775</td>
<td>81</td>
<td>42,000</td>
<td>62,500</td>
<td>62,000</td>
<td>58,500</td>
</tr>
<tr>
<td>101 thru 216</td>
<td>- -</td>
<td>42,000</td>
<td>62,500</td>
<td>62,000</td>
<td>58,500</td>
</tr>
<tr>
<td>1 thru 216 and 775</td>
<td>256</td>
<td>42,000</td>
<td>65,300</td>
<td>64,800</td>
<td>58,500</td>
</tr>
<tr>
<td>217 thru 299, except 249, 252 & 775</td>
<td>233</td>
<td>42,000</td>
<td>65,300</td>
<td>64,800</td>
<td>58,500</td>
</tr>
</tbody>
</table>

*See NOTE 6

Datum

Station 0 is 45 inches forward of the jig point at the centerline of the airplane in the nose wheel well.

M.A.C.

147.28 in. (L.E. of M.A.C. = Fuselage Station 404.13)

Fuel Capacity

S/N 1 thru 82 & 775:
Gravity or Pressure Fueling:

Total	22,620 lb.
Usable	22,500 lb.
Arm*	+433.0

S/N 1 thru 82 & 775 with ASC 41 & ASC 10A, and S/N 83 thru 216:
Gravity or Pressure Fueling:

Total	23,400 lb.
Usable	23,300 lb.
Arm*	435.9

Fuel weights based upon fuel density of 6.75 lb. per gal.
See NOTE 1 for system fuel and unusable fuel.
*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity

<table>
<thead>
<tr>
<th></th>
<th>Engine Oil</th>
<th>13.7 lb./14.6 U.S. pints-left engine (Arm = +564.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14.6 lb./15.6 U.S. pints-right engine (Arm = +564.0)</td>
</tr>
<tr>
<td></td>
<td>APU Oil</td>
<td>5.1 lb./5.4 U.S. pints (Arm = +620.0)</td>
</tr>
</tbody>
</table>

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.
Capacities shown are for engine oil tankage only.
Total engine oil is an additional 14 lb. per engine.

Serial No. Eligible

S/N 1 thru 216, including 775; & S/N 217 thru 299 with Aircraft Service Change 233, except S/N 249 and 252.
GULFSTREAM AEROSPACE

G1159 (INCLUDING TIP TANK AIRPLANE) WEIGHT AND BALANCE DATA
ALLOWABLE ZERO FUEL GROSS WEIGHT
CG ENVELOPE

IF THE ZFGW IS WITHIN THE ENVELOPE, THE FUELED AIRCRAFT WILL BE WITHIN FAA APPROVED LIMITS FOR ALL FUEL LOADINGS.

<table>
<thead>
<tr>
<th>AIRPLANE SERIAL NO.</th>
<th>WITH ASC</th>
<th>ENVELOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 THRU 82 AND 775</td>
<td>10A AND 41</td>
<td>B</td>
</tr>
<tr>
<td>83 THRU 100</td>
<td>81 OR 200</td>
<td>C</td>
</tr>
<tr>
<td>1 THRU 100 AND 775</td>
<td>81 OR 200</td>
<td>C</td>
</tr>
<tr>
<td>100 AND SUB EXCLUDING 775</td>
<td>81 OR 200</td>
<td>C</td>
</tr>
</tbody>
</table>
II. - Model G-1159, Gulfstream II (Transport Category), Increased Range Airplane (Tip Tanks), Approved May 13, 1977.

Engines

2 Rolls Royce Spey RB (163-25) 511-8 (Type Certificate E2EU)

Fuel

Kerosene

American
ASTM D 1655-78 Jet A
ASTA D 1655-78 Jet A-1
I.A.T.A. 1988: Kerosene type
MIL-T-83133 Grade JP-8

British
D Eng. R.D. 2453 Issue 5 (2)
D Eng. R.D. 2494 Issue 10

Canadian
CAN/CGCB 3.23-M86

CIS
T-1, TS-1 & RT (GOST 10227-86)
T-7, (GOST 12308-66)

French
AIR 3405/C

Romanian
(3754/73 CS-3))

STAS 5639

JP-4 Wide Cut Type (See NOTE 5)

American
ASTM D 1655-89 Jet B
MIL-T-5624N Grade JP-4

British
D Eng. R.D. 2454 Issue 4 (2)
D Eng. R.D. 2486 Issue 9

Canadian
CAN/CGSB 3.22 M86

CIS
T-2 (GOST 10027-86)

French
AIR 3407/B

German
TL 9130-006 Issue 6

JP-5 High Flash-Point Type

American
MIL-T-5624N Grade JP-5

British
D Eng. R.D. 2452 Issue 2 (3)
D Eng. R.D. 2498 Issue 7

Canadian
3-GP-24Ma

French
AIR 3404/C

German
TL 9130-007 Issue 4

Fuel shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Oil

Castrol 3C and 325
Aeroshell Turbo Oil 390 and 500
Esso/Exxon 2380
Mobil Jet Oil II
Chevron Jet Engine Oil 5
Caltex RPM Jet Engine Oil 5
Texaco SATO 7730

NOTE: Mixing of oils is not recommended for APU.

Oil shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Engine Limits

Static Thrust (std. day) S.L.,
Takeoff (5 min.) 11,400 lb.
Maximum continuous 10,940 lb.

Maximum permissible engine rotor operating speeds:
N1 (low compressor) (106.6%) 8,950 rpm
N2 (high compressor) (100.1%) 12,500 rpm
Engine Limits (con’t)

Maximum permissible temperatures:

Turbine outlet gas (Trimmer Resistors, Inc.)
- Takeoff (5 min.) 585°C
- Maximum continuous 540°C
- Momentary maximum during starts and relights 570°C
- Maximum with reverse thrust (30 second limit) 490°C
- Maximum over-temperature (20 second limit) 610°C

Engines with S.B. Sp 77-43
- (20 second limit) 615°C
- (120 second limit) 595°C

- Oil inlet 100°C
- Oil inlet (15 min. limit) 120°C

- Fuel inlet temperature to engine high pressure pump 90°C
- Fuel inlet temperature (15 min. limit) 110°C

Maximum Air Bleed Extraction
(Percent of no bleed mass flow)
- Maximum engine high pressure bleed 2.45%
- Maximum engine low pressure bleed 3.65%

Auxiliary Power Unit (APU)

AirResearch GTCP-36-6: S/N 1 thru 248 and 775
- Maximum permissible exhaust gas temperature 700°C
- Maximum rotor speed - all conditions 110%
- APU alternator load rating 20Kva
- APU rated output shaft power 10hp
 (with 50 lb. per min. bleed air and ambient temperature of 113°F)

AirResearch GTCP-36-100G: S/N 250 thru 299, except 252
- Maximum permissible exhaust gas temperature -
 - Up to 60% rpm during start 988°C
 - 60% - 100% during start 821°C to 732°C
 (linear decrease)

 - Running 732°C
 - Maximum rotor speed - all conditions 110%
 - APU alternator load rating 20Kva
 - APU rated output shaft power 50hp
 (with 46.6 lb. per min. bleed air and ambient temperature of 103°F)

Airspeed Limits (CAS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>mo</sub> (Maximum operating)</td>
<td>345 mph (300 knots) at S.L. to 389 mph (338 knots) at 28,100 ft.</td>
<td></td>
</tr>
<tr>
<td>M<sub>mo</sub> = .85 @ 28,100 ft and above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>a</sub> (Maneuvering)</td>
<td>184 mph</td>
<td>160 knots</td>
</tr>
<tr>
<td>V<sub>sh</sub> (Speed brake)</td>
<td>Sea level to 33,500 ft.</td>
<td>345 mph</td>
</tr>
<tr>
<td>M<sub>sh</sub> = .85 @ 33,500 ft. and above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>fe</sub> (Flaps down to 39°)</td>
<td>196 mph</td>
<td>170 knots</td>
</tr>
<tr>
<td>V<sub>fe</sub> (Flaps down to 20°)</td>
<td>253 mph</td>
<td>220 knots</td>
</tr>
<tr>
<td>V<sub>fe</sub> (Flaps down to 10°)</td>
<td>288 mph</td>
<td>250 knots</td>
</tr>
<tr>
<td>V<sub>lo</sub> (Landing gear operation)</td>
<td>259 mph</td>
<td>225 knots</td>
</tr>
<tr>
<td>V<sub>le</sub> (Landing gear extended)</td>
<td>288 mph</td>
<td>250 knots</td>
</tr>
<tr>
<td>V<sub>mca</sub> (Minimum control air)</td>
<td>117 mph</td>
<td>102 knots</td>
</tr>
<tr>
<td>V<sub>ll</sub> (Landing light operation)</td>
<td>288 mph</td>
<td>250 knots</td>
</tr>
</tbody>
</table>
Maximum Operating Altitude

43,000 feet (airplanes modified by Aircraft Service Change 299 are approved to 45,000 feet.)

Maximum Weight (lb.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thru 216 & 775</td>
<td>200</td>
<td>42,000</td>
<td>66,000</td>
<td>65,500</td>
<td>58,500</td>
</tr>
<tr>
<td>217 thru 299, except 249 & 252</td>
<td>- -</td>
<td>42,000</td>
<td>66,000</td>
<td>65,500</td>
<td>58,500</td>
</tr>
</tbody>
</table>

*See NOTE 6 and "Serial No. Eligible."

Datum

Station 0 is 45 inches forward of the jig point at the centerline of the airplane in the nose wheel well.

M.A.C.

147.28 in. (L.E. of M.A.C. = Fuselage Station 404.13)

Fuel Capacity

Gravity or Pressure Fueling:

<table>
<thead>
<tr>
<th>Total</th>
<th>Usable</th>
<th>Arm*</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,936 lb.</td>
<td>26,800 lb.</td>
<td>+445.2</td>
</tr>
</tbody>
</table>

Fuel weights based upon fuel density of 6.75 lb. per gal.

See NOTE 1 for system fuel and unusable fuel.

*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity

Engine Oil

13.7 lb./14.6 U.S. pints-left engine (Arm = +564.0)
14.6 lb./15.6 U.S. pints-right engine (Arm = +564.0)

APU Oil

5.1 lb./5.4 U.S. pints (Arm = +620.0)

Oil weights based upon oil density of 7.5 lb. per gal.

See NOTE 1 for system oil.

Capacities shown are for engine oil tankage only.

Total engine oil is an additional 14 lb. per engine.

Serial No. Eligible

S/N 1 thru 216 and 775 with Aircraft Service Change 200; and S/N 217 thru 299, except 249 and 252.
GULFSTREAM G-1159 WEIGHT AND CENTER OF GRAVITY ENVELOPE AT GROUND STATIC ATTITUDE (WITH TIP TANKS)

GULFSTREAM AEROSPACE
G1159 (INCLUDING TIP TANK AIRPLANE) WEIGHT AND BALANCE DATA
ALLOWABLE ZERO FUEL GROSS WEIGHT CG ENVELOPE
IF THE ZFGW IS WITHIN THE ENVELOPE, THE FUELED AIRCRAFT WILL BE WITHIN FAA APPROVED LIMITS FOR ALL FUEL LOADINGS.

<table>
<thead>
<tr>
<th>AIRPLANE SERIAL NO.</th>
<th>WITH ASC</th>
<th>ENVELOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 THRU 82 AND 775</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1 THRU 82 AND 775</td>
<td>10A AND 41</td>
<td>B</td>
</tr>
<tr>
<td>83 THRU 100</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1 THRU 100 AND 775</td>
<td>81 OR 200</td>
<td>C</td>
</tr>
<tr>
<td>100 AND SUB EXCLUDING 775</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

The G-1159A is the same as the G-1159 except for the following differences:

(a) Wing: Span is increased 6 feet, chord increased forward of original front beam, contour changed forward of mid-chord, and 5-foot winglets added.

(b) Fuselage: Addition of a 2-foot section aft of main door, radome extended and contour modified, and new curved windshield and support structure.

(c) Maximum takeoff weight increased to 68,200 lb./69,700 lb.

(d) Various changes to autopilot, flight instruments, and engine instruments.

Engines

2 Rolls Royce Spey RB (163-25) 511-8 (Type Certificate E2EU)

Fuel

Kerosene

American
ASTM D 1655-78 Jet A
ASTA D 1655-78 Jet A-1
I.A.T.A. 1988: Kerosene type
MIL-T-83133 Grade JP-8

British
D Eng. R.D. 2453 Issue 5 (2)
D Eng. R.D. 2494 Issue 10

Canadian
CAN/CGCB 3.23-M86

CIS
T-1, TS-1 & RT (GOST 10227-86)
T-7, (GOST 12308-66)

French
AIR 3405/C

Romanian
(3754/73 CS-3))
STAS 5639

JP-4 Wide Cut Type (See NOTE 5)

American
ASTM D 1655-89 Jet B
MIL-T-5624N Grade JP-4

British
D Eng. R.D. 2454 Issue 4 (2)
D Eng. R.D. 2486 Issue 9

Canadian
CAN/CGSB 3.22 M86

CIS
T-2 (GOST 10027-86)

French
AIR 3407/B

German
TL 9130-006 Issue 6

JP-5 High Flash-Point Type

American
MIL-T-5624N Grade JP-5

British
D Eng. R.D. 2452 Issue 2 (3)
D Eng. R.D. 2498 Issue 7

Canadian
3-GP-24Ma

French
AIR 3404/C

German
TL 9130-007 Issue 4

Fuel shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.
Oil

Castrol 3C and 325
Aeroshell Turbo Oil 390 and 500
Esso/Exxon 2380
Mobil Jet Oil II
Chevron Jet Engine Oil 5
Caltex RPM Jet Engine Oil 5
Texaco SATO 7730

NOTE: Mixing of oils is not recommended for APU.

Oil shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Engine Limits

<table>
<thead>
<tr>
<th>Static Thrust (std. day) S.L.</th>
<th>11,400 lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum continuous</td>
<td>10,940 lb.</td>
</tr>
</tbody>
</table>

Maximum permissible engine rotor operating speeds:
- N1 (low compressor) (106.6%) 8,950 rpm
- N2 (high compressor) (100.1%) 12,500 rpm

Maximum permissible temperatures:
- Turbine outlet gas (Trimmer Resistors, Inc.)
 - Takeoff (5 min.) 585°C
 - Maximum continuous 540°C
 - Momentary maximum during starts and relights 570°C
 - Maximum with reverse thrust (30 second limit) 490°C
 - Maximum over-temperature (20 second limit) 610°C

- Engines with S.B. Sp 77-43 (20 second limit) 615°C
 - (20 second limit) 595°C

- Oil inlet 100°C
- Oil inlet (15 min. limit) 120°C

- Fuel inlet temperature to engine high pressure pump 90°C
- Fuel inlet temperature (15 min. limit) 110°C

Maximum Air Bleed Extraction
(Percent of no bleed mass flow)
- Maximum engine high pressure bleed 2.45%
- Maximum engine low pressure bleed 3.65%

Auxiliary Power Unit (APU)

AirResearch GTCP-36-100G

- Maximum permissible exhaust gas temperature -
 - Up to 60% rpm during start 988°C
 - 60% - 100% during start 821°C to 732°C (linear decrease)

- Running 732°C
- Maximum rotor speed - all conditions 110%
- APU alternator load rating 20Kva
- APU rated output shaft power 50hp
 (with 46.6 lb. per min. bleed air and ambient temperature of 103°F)
Airspeed Limits (CAS)

\[V_{mo} \] (Maximum operating)
- Sea level to 28,000 ft. 392 mph 340 knots

\[M_{mo} = 0.85 \] @ 28,000 ft. and above

\[V_a \] (Maneuvering) 237 mph 206 knots

\[V_{sb} \] (Speed brake)
- Sea level to 28,000 ft. 392 mph 340 knots

\[M_{sb} = 0.85 \] @ 28,000 ft. and above

\[V_{fe} \] (Flaps down to 39°) 195 mph 170 knots
- (Flaps down to 20°) 253 mph 220 knots
- (Flaps down to 10°) 288 mph 250 knots

\[V_{lo} \] (Landing gear operation) 259 mph 225 knots

\[V_{le} \] (Landing gear extended) 288 mph 250 knots

\[V_{mca} \] (Minimum control air) 117 mph 102 knots

\[V_{mce} \] (Minimum control ground) 103 mph 89 knots

Maximum Operating Altitude 45,000 feet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>249, 252, 300 thru 426, and 875</td>
<td>- -</td>
<td>42,000</td>
<td>68,700</td>
<td>68,200</td>
<td>58,500</td>
<td></td>
</tr>
<tr>
<td>249, 252, 300 thru 426, and 875</td>
<td>70</td>
<td>44,000</td>
<td>70,200</td>
<td>69,700</td>
<td>58,500</td>
<td></td>
</tr>
<tr>
<td>427 & Sub</td>
<td>- -</td>
<td>44,000</td>
<td>70,200</td>
<td>69,700</td>
<td>58,500</td>
<td></td>
</tr>
</tbody>
</table>

* See NOTE 6.

Datum
The zero datum is 21 inches forward of the jig point at the centerline of the airplane in the nose wheel well or 193 inches forward of Fuselage Station 193B.

M.A.C. 165.4 in. (L.E. of M.A.C. = Fuselage Station 387.8)

Fuel Capacity
S/N 249, 252, 300 thru 371, and 875:
- Gravity or Pressure Fueling:
 - Total 28,014 lb.
 - Usable 27,900 lb.
 - Arm* +430.4

S/N 372 and subsequent and S/N 875, 249, 252, and 300 thru 371 with ASC 30:
- Gravity or Pressure Fueling:
 - Total 28,444 lb.
 - Usable 28,300 lb.
 - Arm* +423.3

Fuel weights based upon fuel density of 6.75 lb. per gal.

*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity
- Engine Oil 13.7 lb./14.6 U.S. pints-left engine (Arm = +564.0)
- 14.6 lb./15.6 U.S. pints-right engine (Arm = +564.0)
- APU Oil 4.75 lb./5.4 U.S. pints (Arm = +620.0)

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.
Capacities shown are for engine oil tankage only.
Total engine oil is an additional 14 lb. per engine.

Serial No. Eligible S/N 249, 252, 300 and subsequent, including S/N 875.
GULFSTREAM G-1159A WEIGHT AND CENTER OF GRAVITY
ENVELOPE AT GROUND STATIC ATTITUDE

GULFSTREAM AEROSPACE
G1159A WEIGHT AND BALANCE DATA
ALLOWABLE ZERO FUEL GROSS WEIGHT
CG ENVELOPE

IF THE ZFGW IS WITHIN THE ENVELOPE, THE FUELED AIRCRAFT WILL
BE WITHIN FAA APPROVED LIMITS FOR ALL FUEL LOADINGS.

<table>
<thead>
<tr>
<th>AIRPLANE SERIAL NO.</th>
<th>WITH ASC</th>
<th>ENVELOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>249, 252, 300 THRU 426 INCLUDING 875</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>249, 252, 300 THRU 426 INCLUDING 875</td>
<td>70 PT I</td>
<td>B</td>
</tr>
<tr>
<td>249, 252, 300 THRU 426 INCLUDING 875</td>
<td>70 PT II</td>
<td>C</td>
</tr>
<tr>
<td>427 AND SUBS</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
IV. - Model G-1159B, Gulfstream G-IIB (Transport Category), Approved September 17, 1981.

The G-1159B is the same as the G-1159 except for the following differences:

(a) Wing: Span is increased 6 feet, chord increased forward of original front beam, contour changed forward of mid-chord, and 5-foot winglets added.

(b) Fuselage: Addition of optional extended modified contour radome.

(c) Maximum takeoff weight increased to 68,200 lb./69,700 lb.

(d) Various changes to autopilot, flight instruments, and fuel quantity instruments.

NOTE: Model G-1159, all serial numbers, are eligible for identification as Model G-1159B when modified in accordance with GAC Aircraft Service Change (ASC) 300.

Engines

2 Rolls Royce Spey RB (163-25) 511-8 (Type Certificate E2EU)

Fuel

Kerosene
American
ASTM D 1655-78 Jet A
ASTA D 1655-78 Jet A-1
I.A.T.A. 1988: Kerosene type
MIL-T-83133 Grade JP-8

British
D Eng. R.D. 2453 Issue 5 (2)
D Eng. R.D. 2494 Issue 10

Canadian
3-GR-23-M86

CIS
T-1, TS-1 & RT (GOST 10227-86)
T-7 (GOST 12308-86)

French
AIR 3405/C

Romanian
(3754/73 (CS-3))
STAS 5639

JP-4 Wide Cut Type (See NOTE 5)
American
ASTM D 1655-89 Jet B
MIL-T-5624N Grade JP-4
I.A.T.A. 1987 JP.4 type

British
D Eng. R.D. 2486 Issue 9
D Eng. R.D. 2454 Issue 4 (2)

Canadian
CAN/CGSB 3.22 M86 grade

CIS
T-2 (GOST 10027-86)

French
AIR 3407/B

German
TL 9130-006 Issue 6

JP-5 High Flash-Point Type
American
MIL-T-5624N Grade JP-5

British
D Eng. R.D. 2452 Issue 2 (3)
D Eng. R.D. 2498 Issue 7

Canadian
3-GR-24Ma

French
AIR 3404/C

German
TL 9130-007 Issue 4

Fuel shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Oil

Castrol 3C and 325
Aeroshell Turbo Oil 390 and 500
Esso/Exxon 2380
Mobil Jet Oil II
Chevron Jet Engine Oil 5
Caltex RPM Jet Engine Oil 5

NOTE: Mixing of oils is not recommended for APU.

Oil shall conform to the specifications as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.
Engine Limits

<table>
<thead>
<tr>
<th>Static Thrust (std. day) S.L.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff (5 min.)</td>
<td>11,400 lb.</td>
</tr>
<tr>
<td>Maximum continuous</td>
<td>10,940 lb.</td>
</tr>
</tbody>
</table>

Maximum permissible engine rotor operating speeds:
- N1 (low compressor) (106.6%) 8,950 rpm
- N2 (high compressor) (100.1%) 12,500 rpm

Maximum permissible temperatures:
- Turbine outlet gas (Trimmer Resistors, Inc.)
 - Takeoff (5 min.) 585°C
 - Maximum continuous 540°C
 - Momentary maximum during starts and relights 570°C
 - Maximum with reverse thrust (30 second limit) 490°C
 - Maximum over-temperature (20 second limit) 610°C
 - Engines with S.B. Sp 77-43 (20 second limit) 615°C (120 second limit) 595°C
- Oil inlet 100°C
- Oil inlet (15 min. limit) 120°C
- Fuel inlet temperature to engine high pressure pump 90°C
- Fuel inlet temperature (15 min. limit) 110°C

Maximum Air Bleed Extraction
- Maximum engine high pressure bleed 2.45%
- Maximum engine low pressure bleed 3.65%

Auxiliary Power Unit (APU)

<table>
<thead>
<tr>
<th>AiResearch GTCP-36-100G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible exhaust gas temperature -</td>
<td></td>
</tr>
<tr>
<td>- Up to 60% rpm during start</td>
<td>988°C</td>
</tr>
<tr>
<td>60% - 100% during start</td>
<td>821°C to 732°C (linear decrease)</td>
</tr>
<tr>
<td>-Running</td>
<td>732°C</td>
</tr>
<tr>
<td>Maximum rotor speed - all conditions</td>
<td>110%</td>
</tr>
<tr>
<td>APU alternator load rating</td>
<td>20Kva</td>
</tr>
<tr>
<td>APU rated output shaft power</td>
<td>50hp</td>
</tr>
<tr>
<td>(with 46.6 lb. per min. bleed air and ambient temperature of 103°F)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AiResearch GTCP-36-6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible exhaust gas temperature</td>
<td>700°C</td>
</tr>
<tr>
<td>Maximum rotor speed - all conditions</td>
<td>110%</td>
</tr>
<tr>
<td>APU Alternator load rating</td>
<td>20Kva</td>
</tr>
<tr>
<td>APU rated output shaft power</td>
<td>10hp</td>
</tr>
<tr>
<td>(with 50 lb. per min. bleed air and ambient temperature of 113°F)</td>
<td></td>
</tr>
</tbody>
</table>
Airspeed Limits (CAS)

- **V_{mo}** (Maximum operating)
 - Sea level to 28,000 ft.
 - 392 mph
 - 340 knots

- **M_{mo}** = .85 @ 28,000 ft and above

- **V_{a}** (Maneuvering)
 - 237 mph
 - 206 knots

- **V_{sb}** (Speed brake)
 - Sea level to 28,000 ft.
 - 392 mph
 - 340 knots

- **M_{sb}** = .85 @ 28,000 ft. and above

- **V_{fe}** (Flaps down to 39°)
 - 195 mph
 - 170 knots

- **V_{fe}** (Flaps down to 20°)
 - 253 mph
 - 220 knots

- **V_{fe}** (Flaps down to 10°)
 - 288 mph
 - 250 knots

- **V_{lo}** (Landing gear operation)
 - 259 mph
 - 225 knots

- **V_{le}** (Landing gear extended)
 - 288 mph
 - 250 knots

- **V_{mca}** (Minimum control air)
 - 115 mph
 - 100 knots

- **V_{mcg}** (Minimum control ground)
 - 103 mph
 - 89 knots

Maximum Operating Altitude

- 45,000 feet

Maximum Weight (lb.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & Sub.</td>
<td>- -</td>
<td>42,000</td>
<td>68,700</td>
<td>68,200</td>
<td>58,500</td>
</tr>
<tr>
<td>1 & Sub.</td>
<td>275</td>
<td>44,000</td>
<td>70,200</td>
<td>69,700</td>
<td>58,500</td>
</tr>
</tbody>
</table>

* See NOTE 6.

Datum

Station 0 is 45 inches forward of the jig point at the centerline of the airplane in the nose wheel well.

M.A.C.

165.39 in. (L.E. of M.A.C. = Fuselage Station 387.81)

Fuel Capacity

Modification Nos. 1 thru 8

Gravity or Pressure Fueling:
- Total 28,014 lb.
- Usable 27,900 lb.
- Arm* +430.4

Modification Nos. 9 and subsequent.

Gravity or Pressure Fueling:
- Total 28,444 lb.
- Usable 28,300 lb.
- Arm* +423.3

Fuel weights based upon fuel density of 6.75 lb. per gal.

*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity

- **Engine Oil**
 - 13.7 lb./14.6 U.S. pints-left engine (Arm = +564.0)
 - 14.6 lb./15.6 U.S. pints-right engine (Arm = +564.0)

- **APU Oil**
 - 4.75 lb./5.4 U.S. pints (Arm = +620.0)

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.
Capacities shown are for engine oil tankage only.
Total engine oil is an additional 14 lb. per engine.

Serial No. Eligible

G-1159; S/N 1 thru 299, including 775, excluding 249 & 252, when modified by Aircraft Service Change 300.
GULFSTREAM AEROSPACE
G1159B WEIGHT AND BALANCE DATA
ALLOWABLE ZERO FUEL GROSS WEIGHT
CG ENVELOPE

IF THE ZFGW IS WITHIN THE ENVELOPE, THE FUELED AIRCRAFT WILL
BE WITHIN FAA APPROVED LIMITS FOR ALL FUEL LOADINGS.

<table>
<thead>
<tr>
<th>MODIFICATION NO.</th>
<th>WITH ASC</th>
<th>ENVELOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AND SUBS</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1 AND SUBS</td>
<td>275</td>
<td>B</td>
</tr>
</tbody>
</table>

Engines
2 Rolls Royce Tay Mark 611-8 (FAA Type Certificate No. E25NE)
(LBA/EASA Type Certificate No. 6327)

Fuel

<table>
<thead>
<tr>
<th>Country</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>ASTM D 1655, Jet A</td>
</tr>
<tr>
<td></td>
<td>ASTM D 1655, Jet A-1</td>
</tr>
<tr>
<td></td>
<td>MIL-T-83133, Grade JP8</td>
</tr>
<tr>
<td></td>
<td>MIL-DTL-83133</td>
</tr>
<tr>
<td>British</td>
<td>Def. Stan. 91-87</td>
</tr>
<tr>
<td></td>
<td>Def. Stan. 91-91</td>
</tr>
<tr>
<td>Canadian</td>
<td>CAN/CGSB-3.23</td>
</tr>
<tr>
<td>Chinese</td>
<td>GB 6537-2006 including the following fuel additives limited to the concentrations stated in Annex A of GB 6537-2006:</td>
</tr>
<tr>
<td></td>
<td>1. Static Dissipater additive: Stadis 450</td>
</tr>
<tr>
<td></td>
<td>2. Antioxidant: 2,6-ditertiary-butyl-4-methyl-phenol</td>
</tr>
<tr>
<td></td>
<td>3. Icing Inhibitor: Ethylene Glycol Monomethyl Ether or Diethylene Glycol Monomethyl Ether</td>
</tr>
<tr>
<td></td>
<td>4. Metal Deactivator: N,N’-disalicylidene 1,2-propanediamine</td>
</tr>
<tr>
<td>CIS</td>
<td>GOST 10227-86, T-1, TS-1 & RT</td>
</tr>
<tr>
<td>French</td>
<td>DCSEA 134</td>
</tr>
<tr>
<td>Russian</td>
<td>GOST R52050-2006</td>
</tr>
</tbody>
</table>

JP-4 Wide Cut Type (See NOTE 5)

<table>
<thead>
<tr>
<th>Country</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>ASTM D 1655, Jet B</td>
</tr>
<tr>
<td></td>
<td>ASTM D6615</td>
</tr>
<tr>
<td></td>
<td>MIL-DTL-5624, Grade JP4</td>
</tr>
<tr>
<td></td>
<td>MIL-PRF-5624 Grade JP4</td>
</tr>
<tr>
<td>British</td>
<td>DEF. STAN. 91-88</td>
</tr>
<tr>
<td>Canadian</td>
<td>CAN/CGSB-3.22</td>
</tr>
</tbody>
</table>

JP-5 High Flash - Point Type

<table>
<thead>
<tr>
<th>Country</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>MIL-DTL-5624, Grade JP5</td>
</tr>
<tr>
<td></td>
<td>MIL-PRF-5624 Grade JP5</td>
</tr>
<tr>
<td>British</td>
<td>Def. Stan. 91-86</td>
</tr>
<tr>
<td>Canadian</td>
<td>3-GP-3.24</td>
</tr>
<tr>
<td>French</td>
<td>DCSEA 144</td>
</tr>
</tbody>
</table>

Fuel shall conform to the specification as listed or to subsequent revisions found in the latest approved Airplane Flight Manual.

Oil

The following oils are approved for use in the engine and APU:

3 Centistoke
Aeroshell Turbo Oil 390
Castrol 3C Turbine Oil
Castrol 325 Engine Oil
ESSO/Exxon Turbo 2389

4 Centistoke
Esso/Exxon Turbo Oil 2380
Mobil Jet Oil II
Mobil Jet Oil 254
Castrol 5000 Gas Turbine Oil
Aeroshell Turbine Oil ATO 500

NOTE: Mixing of oils is not recommended for APU.

NOTE: Mixing of oils is not recommended but brands may be mixed if
operationally essential. Oils of the above brands, when reclaimed to the approved Rolls-Royce standard for viscosity and grade, are approved for use.

Oil shall conform to the specification as listed or to subsequent revisions in the latest approved Airplane Flight Manual.

Engine Limits

<table>
<thead>
<tr>
<th>Static Thrust (std. day) S.L.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Takeoff (See Note 14)</td>
<td>13,850 lb.</td>
<td></td>
</tr>
<tr>
<td>Rated Maximum continuous</td>
<td>12,420 lb.</td>
<td></td>
</tr>
</tbody>
</table>

Engine Limits (con’t)

<table>
<thead>
<tr>
<th>Maximum permissible continuous rotor operating speeds:</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 (low compressor) (95.5%) 8,015 rpm</td>
</tr>
<tr>
<td>N2 (high compressor) (97.5%) 12,172 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum permissible temperatures (°C):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine gas temp measured at nozzle guide vanes ahead of first low stage pressure turbine:</td>
</tr>
<tr>
<td>Takeoff (See Note 14) 800°</td>
</tr>
<tr>
<td>Maximum continuous 715°</td>
</tr>
<tr>
<td>Momentary maximum during ground starts 700°</td>
</tr>
<tr>
<td>Momentary maximum during airsstarts (relights) 780°</td>
</tr>
<tr>
<td>Maximum over-temperature (20 second limit) 820°</td>
</tr>
<tr>
<td>Oil temp (minimum for starting) -40°</td>
</tr>
<tr>
<td>Oil temp (maximum) 105°</td>
</tr>
<tr>
<td>Oil temp (15 minute limit) 120°</td>
</tr>
<tr>
<td>Fuel inlet temp to engine high pressure pump 90°</td>
</tr>
<tr>
<td>Fuel inlet temperature (15 min. limit) 120°</td>
</tr>
</tbody>
</table>

Maximum Permissible Air Bleed Extraction

<table>
<thead>
<tr>
<th>7th Stage HPC Bleed</th>
<th>7.0 lb./sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>12th Stage HPC Bleed (max continuous and below)</td>
<td>10.0 lb./sec</td>
</tr>
<tr>
<td>Fan Bleed</td>
<td>10.5 lb./sec</td>
</tr>
</tbody>
</table>

Auxiliary Power Unit (APU)

<table>
<thead>
<tr>
<th>AirResearch GTCP-36-100G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible exhaust gas temperature -</td>
</tr>
<tr>
<td>Up to 60% rpm during start 988°C</td>
</tr>
<tr>
<td>60% - 100% during start 821°C to 732°C (linear decrease)</td>
</tr>
<tr>
<td>Running 732°C</td>
</tr>
<tr>
<td>Maximum rotor speed - all conditions 110%</td>
</tr>
<tr>
<td>APU alternator load rating 30Kva</td>
</tr>
<tr>
<td>APU rated output shaft power 50hp</td>
</tr>
<tr>
<td>(with 46.6 lb. per min. bleed air and ambient temp of 103°F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honeywell 36-150(G) (S/N 1000 -1535 by ASC 465)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible exhaust gas temperature-</td>
</tr>
<tr>
<td>Up to 50% rpm during start 1785°F</td>
</tr>
<tr>
<td>51% - 87% during start 1785°F to 1350°F (linear decrease)</td>
</tr>
<tr>
<td>87% - 100% during start 1350°F</td>
</tr>
<tr>
<td>Running 1230°F</td>
</tr>
<tr>
<td>Maximum rotor speed - all conditions: 110.70%</td>
</tr>
<tr>
<td>APU alternator load rating 30Kva</td>
</tr>
<tr>
<td>APU rated output shaft power 47.3hp</td>
</tr>
<tr>
<td>(with 66.8 lb. per min. bleed air and ambient temp of 103°F)</td>
</tr>
</tbody>
</table>

Airspeed Limits (CAS)

<table>
<thead>
<tr>
<th>V_{mo}/M_{mo} (Maximum operating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Altitude/Mach Flight Operating Envelope</td>
</tr>
<tr>
<td>V_a (Maneuvering) 195 mph 170 knots</td>
</tr>
<tr>
<td>235 mph (1) 206 knots (1)</td>
</tr>
<tr>
<td>V_{fc} (Flaps down to 39°) 196 mph 170 knots</td>
</tr>
<tr>
<td>206 mph (1) 180 knots (1)</td>
</tr>
</tbody>
</table>
(Flaps down to 20°) 253 mph 220 knots
(Flaps down to 10°) 288 mph 250 knots
\(V_{lo} \) (Landing gear operation) 259 mph 225 knots
\(V_{le} \) (Landing gear extended) 288 mph 250 knots
\(V_{mce} \) (Minimum control ground) 128 mph 111 knots
\(V_{mca} \) (Minimum control air) 120 mph 104 knots

(1) Aircraft S/N 1000 thru 1213 with 1159SB41190, S/N 1214 and subsequent

Maximum Operating Altitude
45,000 feet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 thru 1213</td>
<td>46,500</td>
<td>73,600</td>
<td>73,200</td>
<td>58,500</td>
</tr>
<tr>
<td>1000 thru 1213 with ASC 61</td>
<td>49,000</td>
<td>73,600</td>
<td>73,200</td>
<td>58,500</td>
</tr>
<tr>
<td>1000 thru 1213 with ASC 261</td>
<td>49,000</td>
<td>73,600</td>
<td>73,200</td>
<td>58,500</td>
</tr>
<tr>
<td>1000 thru 1213 with ASC 190</td>
<td>49,000</td>
<td>75,000</td>
<td>74,600</td>
<td>66,000</td>
</tr>
<tr>
<td>1214 & Sub</td>
<td>49,000</td>
<td>75,000</td>
<td>74,600</td>
<td>66,000</td>
</tr>
<tr>
<td>1500 & Subs with ASC 440 (G400)</td>
<td>49,000</td>
<td>75,000</td>
<td>74,600</td>
<td>66,000</td>
</tr>
<tr>
<td>1500 & Subs with ASC 436 (G300)</td>
<td>49,000</td>
<td>72,400</td>
<td>72,000</td>
<td>66,000</td>
</tr>
</tbody>
</table>

Datum
For weight and balance purposes, the zero datum is 15 inches aft of the jig point at the centerline of the airplane in the nose wheel well or 206 inches forward of Fuselage Station 206.

M.A.C.
166.22 in. (L.E. of M.A.C. = Fuselage Station 387.7)

Fuel Capacity

Gravity or Pressure Fueling:

<table>
<thead>
<tr>
<th></th>
<th>GIV/GIV(G400)</th>
<th>GIV(G300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>29,605 lb</td>
<td>27,005 lb</td>
</tr>
<tr>
<td>Usable</td>
<td>29,500 lb.</td>
<td>26,900 lb</td>
</tr>
<tr>
<td>Arm*</td>
<td>+430.4</td>
<td>+426.5</td>
</tr>
</tbody>
</table>

Fuel weights based upon fuel density of 6.75 lb. per gal.
*Arm based on ground static altitude (-1.5° FRL)

Oil Capacity

Total engine oil capacity 14.0 lb./14.4 U.S. pints (each engine)
Usable engine oil capacity 10.1 lb./10.8 U.S. pints (each engine)
(Arm = +582.00)

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.
Capacities shown are for engine oil tankage only.
Total engine oil is an additional 16.8 lb. per engine.

APU oil 4.75 lb./5.0 U.S. Pints
(Arm = +620.0)

Serial No. Eligible
S/N 1000 through 1535 (1500-1535 are G300/G400).
AIRSPEED LIMITS (MAXIMUM OPERATING)

ALTITUDE / MACH FLIGHT ENVELOPE
(S/N 1000 AND SUBSEQUENT)
ALTITUDE / MACH FLIGHT ENVELOPE
(S/N 1000 – 1213 WITH ASC 61)
Aircraft Zero Fuel Gross Weight Envelope

<table>
<thead>
<tr>
<th>For SN 1000-1213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Weight (lbs)</td>
</tr>
<tr>
<td>Zero Fuel</td>
</tr>
<tr>
<td>46,500</td>
</tr>
</tbody>
</table>

If the ZFGW is within the envelope, the fueled aircraft will be within FAA approved limits for all fuel loadings.
Aircraft Zero Fuel Gross Weight Envelope

<table>
<thead>
<tr>
<th>Maximum Weight (lbs)</th>
<th>Zero Fuel</th>
<th>Landing</th>
<th>Ramp</th>
<th>Takeoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>For SN 1000-1213 with ASC 61</td>
<td>49,000</td>
<td>58,500</td>
<td>73,600</td>
<td>73,200</td>
</tr>
</tbody>
</table>

If the ZFGW is within the envelope, the fueled aircraft will be within FAA approved limits for all fuel loadings.
Aircraft Zero Fuel Gross Weight Envelope

<table>
<thead>
<tr>
<th>ZFGW (lbs/1000)</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of Gravity (% MAC)</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
</tbody>
</table>

If the ZFGW is within the envelope, the fueled aircraft will be within FAA approved limits for all fuel loadings.

For SN 1000-1213 with ASC 261

<table>
<thead>
<tr>
<th>Maximum Weight (lbs)</th>
<th>49,000</th>
<th>58,500</th>
<th>73,600</th>
<th>73,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aircraft Zero Fuel Gross Weight Envelope

For SN 1214 and Subs. and SN 1000-1213 with ASC 190 and SN 1500 and Subs. with ASC 440

<table>
<thead>
<tr>
<th>Maximum Weight (lbs)</th>
<th>Zero Fuel</th>
<th>Landing</th>
<th>Ramp</th>
<th>Takeoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>49,000</td>
<td>66,000</td>
<td>75,000</td>
<td>74,600</td>
<td></td>
</tr>
</tbody>
</table>

If the ZFGW is within the envelope, the fueled aircraft will be within FAA approved limits for all fuel loadings.
Aircraft Zero Fuel Gross Weight Envelope

For SN 1500 and Subs. with ASC 436

<table>
<thead>
<tr>
<th>Maximum Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Fuel</td>
</tr>
<tr>
<td>49,000</td>
</tr>
</tbody>
</table>

If the ZFGW is within the envelope, the fueled aircraft will be within FAA approved limits for all fuel loadings.
VI. - Model GV (Transport Category), Approved April 11, 1997

The Gulfstream GV is the same as the Gulfstream G-IV except for the following differences:

- Approximately 15% increase in maximum takeoff and landing weights
- Maximum operating altitude increase from 45,000 ft to 51,000 ft
- Engine change from Rolls Royce Tay to Rolls Royce Deutschland BR700-710A1-10 (increased thrust and higher bypass ratio)
- Addition of Full Authority Digital Engine Controls (FADEC)
- Wing span increased from 74.6 ft to 93.5 ft
- Additions to the fuselage of a 5 foot section forward of the main entry door, and a 2 foot section aft of the wing
- Approximately 30% increase in horizontal tail area
- Addition of composite material flight control surfaces and thrust reversers

Engines

2 BMW - Rolls Royce Deutschland BR700-710A1-10 (FAA Type Certificate No. E00057EN) (EASA Type Certificate No. E.018)

Fuel

Kerosene

American
 ASTM D 1655-92, Jet A
 ASTM D 1655-92, Jet A-1
 MIL-DTL-83133, Grade JP-8
 GSTU 320.00149943.007-97
 GSTU 320.00149943.011-99

British
 Def. Stan.91-87
 Def. Stan. 91-91

Canadian
 CAN/CGSB-3.23

Chinese
 GB 6537-2006 including the following fuel additives limited to the concentrations stated in Annex A of GB 6537-2006:
 1. Static Dissipater additive: Stadis 450
 2. Antioxidant: 2,6-diteriary-butyl-4-methyl-phenol
 3. Icing Inhibitor: Ethylene Glycol Monomethyl Ether or Diethylene Glycol Monomethyl Ether
 4. Metal Deactivator: N,N’-disalicylidene 1,2-propanediamine

The following Chinese fuel additives are not approved for use on this Gulfstream aircraft model: Static Dissipater additive T1502 and antifriction additives T1601 and T1602

CIS
 GOST 10227-86, T-1, TS-1 & RT

French
 DCSEA 134/A

JP-4 Wide Cut Type (See NOTE 5)

American
 ASTM D6615
 MIL-DTL-5624 (JP4 Grade)

British
 Def. Stan.91-88

Canadian
 CAN/CGSB-3.22-2001

CIS
 GOST 10277-86

JP-5 High Flash-Point Type

American
 MIL-DTL-5624 JP5 Grade

British
 Def. Stan. 91-86

Canadian
 3-GP-3.24

French
 DCSEA 144/A

Fuel shall conform to the specification as listed or to subsequent revisions found in the latest approved Airplane Flight Manual (AFM).

See AFM for information on high flash point fuels.

Oil

The following oils are approved for use in the engine and APU:

3 Centistoke Type Oils: Aeroshell Turbine Oil 390
5 Centistoke Type Oils: Aeroshell Turbine Oil 500
 Castrol Aero 5000
 Exxon Turbo Oil 2380
 Mobil Jet Oil II
 Mobil Jet Oil 254
NOTE: Mixing of oils is not recommended for APU.

NOTE: Mixing of oils is not recommended but brands may be mixed if operationally essential. Oils of the above brands, when reclaimed to the approved standard for viscosity and grade, are approved for use.

Oil shall conform to the specification as listed or to subsequent revisions in the latest approved Airplane Flight Manual.

Engine Limits

Static Thrust (std. day) S.L.
- Takeoff (5 min.) 14,750 lb.
- Maximum continuous 14,450 lb.

Maximum permissible engine rotor operating speeds:
- N1 (low pressure compressor)
 - Maximum Takeoff (see Note 14) (101.1%) 7,513 rpm
 - Maximum Continuous (101.0%) 7,505 rpm
 - Maximum Overspeed (20 seconds) (101.5%) 7,542 rpm
 - Reverse Thrust (30 seconds) (70%) 5,201 rpm
- N2 (high pressure compressor)
 - Maximum Takeoff (see Note 14) (99.6%) 15,834 rpm
 - Maximum Continuous (98.9%) 15,723 rpm
 - Maximum Overspeed (20 seconds) (99.8%) 15,866 rpm

100% N1 equals 7,431 rpm
100% N2 equals 15,898 rpm

Maximum permissible temperatures (°C):

- Turbine gas temperature measured at nozzle guide vanes ahead of first low stage pressure turbine:
 - Takeoff (see Note 14) 900°
 - Maximum continuous 860°
 - Maximum prior to start 150°
 - Maximum overtemperature (20 seconds limit) 905°
 - Momentary maximum during ground starts 700°
 - Momentary maximum during inflight restarts 850°
 - Oil temp (minimum before accelerating for T/O) +20°
 - Oil temp (minimum for starting) -30°
 - Oil temp (maximum) 160°
 - Fuel inlet temperature to low pressure pump at S.L. 54°
 - Fuel outlet temperature from engine high pressure pump (unrestricted maximum) 158°
 - Fuel outlet temperature (15 min. limit) 165°
 - Fuel inlet temperature (minimum) -40°

Bleed Extraction

EPR = P50/P2: The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amount of fan bleed extraction is related to the fan entry mass flow, W1A.

<table>
<thead>
<tr>
<th>Power Range</th>
<th>Normal Flow (%)</th>
<th>Maximum Flow (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 5</td>
<td>Stage 8</td>
</tr>
<tr>
<td>Idle to 1.06 EPR</td>
<td>****</td>
<td>7.8</td>
</tr>
<tr>
<td>1.06 to 1.3 EPR</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Above 1.3 EPR</td>
<td>4.3</td>
<td>****</td>
</tr>
</tbody>
</table>

Auxiliary Power Unit (APU)

Attained Signal - Model RE220 {GV}

- Rated Output Shaft Power 62 hp (continuous)
 - 70 hp (5 minutes)
 - 101 hp (5 seconds)
- Maximum Generator Output Shaft Speed 12,000 rpm
- Maximum Exhaust Gas Temp (EGT) at Rated Output 1241 °F (T2 = 140 °F)
- Maximum Allowable Rotor Speed 48,320 rpm (T2< 115 °F)
Maximum Allowable EGT
Starting: 1922 °F (1050 °C)
[for T2 < -20 °F (-29 °C), P2 > 6.75 psia]
Operating: 1350 °F (732 °C)
[for T2=140 °F (60 °C)]

Airspeed Limits (CAS)

<table>
<thead>
<tr>
<th>(V_{mo}) (Maximum operating)</th>
<th>(mph)</th>
<th>(KCAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{a}) (Maneuvering)</td>
<td>237</td>
<td>206</td>
</tr>
<tr>
<td>(V_{fe}) (Flaps down to 39°)</td>
<td>190</td>
<td>165</td>
</tr>
<tr>
<td>(V_{fe}) (Flaps down to 39° with ASC19A or 73A incorporated)</td>
<td>196</td>
<td>170</td>
</tr>
<tr>
<td>(V_{lo}) (Landing gear operation)</td>
<td>253</td>
<td>220</td>
</tr>
<tr>
<td>(V_{le}) (Landing gear extended)</td>
<td>259</td>
<td>225</td>
</tr>
<tr>
<td>(V_{mcg}) (Minimum control ground)</td>
<td>288</td>
<td>250</td>
</tr>
<tr>
<td>(V_{mca}) (Minimum control air)</td>
<td>118</td>
<td>103</td>
</tr>
</tbody>
</table>

Maximum Operating Altitude 51,000 feet

Maximum Weight (lb.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>501 & Subs</td>
<td>--</td>
<td>54,500</td>
<td>90,900</td>
<td>90,500</td>
<td>75,300</td>
</tr>
<tr>
<td>501 & Subs</td>
<td>213</td>
<td>56,000</td>
<td>90,900</td>
<td>90,500</td>
<td>75,300</td>
</tr>
</tbody>
</table>

*See NOTE 6 and "Serial No. Eligible."

Datum
For weight and balance purposes, the zero datum is 45 inches forward of the jig point at the centerline of the airplane in the nose wheel well.

M.A.C.
171.19 in. (L.E. of M.A.C. = Fuselage Station 524.74)

Fuel Capacity
Gravity or Pressure Fueling:

<table>
<thead>
<tr>
<th>S/N 501 thru 548</th>
<th>S/N 549 and subs, and 501 Without ASC 50 thru 548 with ASC 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41,506 lb.</td>
</tr>
<tr>
<td>Usable</td>
<td>41,026 lb.</td>
</tr>
<tr>
<td>Arm*</td>
<td>+558.0</td>
</tr>
</tbody>
</table>

Fuel weights based upon fuel density of 6.75 lb. per gal.
*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity
Total engine oil capacity (each engine):

Lucas-Western Gearbox 16.9 lb./18 U.S. pints
APT Gearbox 22.0 lb./24.4 U.S. pints
(Arm = +785.00)

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.

Capacities shown are for engine oil tankage only.
Total engine oil is an additional 9.5 lb. per engine.

APU oil 9.00 lb./9.6 U.S. Pints
(Arm = +782.5)

Serial No. Eligible
S/N 501 through 693, plus 699 (s/n 666 changed to 699).

C. G. Envelope
See Figure 1-3 for GV Zero Fuel Gross Weight vs. Center of Gravity (S/N 501 through 569 without ASC 73/73A or ASC 213)
See Figure 1-3A for GV Zero Fuel Gross Weight vs. Center of Gravity
(S/N 570 and subs without ASC 213, and S/N 501 through 569 with ASC 73/73A and without ASC 213)

See Figure 1-3B for GV Zero Fuel Gross Weight vs. Center of Gravity
(S/N 501 and subs with ASC 213)
Figure 1-3: Zero Fuel Gross Weight Center of Gravity Envelope
(S/N 501 Through 569 Without ASC 73/73A or ASC 213)

<table>
<thead>
<tr>
<th>Pt No.</th>
<th>CG</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.50</td>
<td>45700</td>
</tr>
<tr>
<td>2</td>
<td>34.50</td>
<td>48250</td>
</tr>
<tr>
<td>3</td>
<td>34.50</td>
<td>54000</td>
</tr>
<tr>
<td>4</td>
<td>34.80</td>
<td>54500</td>
</tr>
<tr>
<td>5</td>
<td>37.30</td>
<td>54500</td>
</tr>
<tr>
<td>6</td>
<td>43.00</td>
<td>50850</td>
</tr>
<tr>
<td>7</td>
<td>43.00</td>
<td>44350</td>
</tr>
</tbody>
</table>
Figure 1-3A: Zero Fuel Gross Weight Center of Gravity Envelope
(S/N 570 and Subs Without ASC 213, and S/N 501 Through 569
With ASC 73/73A and Without ASC 213)

<table>
<thead>
<tr>
<th>Pt No.</th>
<th>CG</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.50</td>
<td>45700</td>
</tr>
<tr>
<td>2</td>
<td>34.50</td>
<td>48250</td>
</tr>
<tr>
<td>3</td>
<td>34.50</td>
<td>54000</td>
</tr>
<tr>
<td>4</td>
<td>34.80</td>
<td>54500</td>
</tr>
<tr>
<td>5</td>
<td>37.30</td>
<td>54500</td>
</tr>
<tr>
<td>6</td>
<td>45.00</td>
<td>49600</td>
</tr>
<tr>
<td>7</td>
<td>45.00</td>
<td>44000</td>
</tr>
</tbody>
</table>
Figure 1-3B: Zero Fuel Gross Weight Center of Gravity Envelope
(S/N 501 and Subs With ASC 213)
VII - Model GV-SP (Transport Category), Approved August 14, 2003

The Gulfstream GV-SP is the same as the Gulfstream GV except for the following differences:

- A Honeywell Advanced Flight Deck Display Suite to improve flight crew situational awareness and operational capabilities.
- Airframe aerodynamic improvements, engine improvements, and operational changes for increased performance, range and economics.
- Cabin main entry door relocated forward and seventh cabin window pair added.
- Cabin improvements for increased baggage space, external visibility and comfort.
- Minor system changes for reliability and space utilization.

NOTE: There are two variants of the GV-SP (See Note 8): (1) The G550, which is identical to the GV-SP, and (2) the G500, which has a reduced fuel capacity.

Engines

2 BMW - Rolls Royce Deutschland BR700-710C4-11 (FAA Type Certificate No. E00057EN) (EASA Type Certificate No. E.018)

Fuel

Kerosene

American
ASTM D 1655-92, Jet A
ASTM D 1655-92, Jet A-1
MIL-DTL-83133, Grade JP-8
GSTU 320.00149943.007-97 (RT Type)
GSTU 320.00149943.011-99 (TS-1 Type)

British
DEF. STAN. 91-87
DEF. STAN. 91-91)

Canadian
CAN/CGSB-3.23

Chinese
GB 6537-2006 including the following fuel additives limited to the concentrations stated in Annex A of GB 6537-2006:
1. Static Dissipater additive: Stadis 450
2. Antioxidant: 2,6-ditertiary-butyl-4-methyl-phenol
3. Icing Inhibitor: Ethylene Glycol Monomethyl Ether or Diethylene Glycol Monomethyl Ether
4. Metal Deactivator: N,N’-disalicylidene 1,2-propanediamine

The following Chinese fuel additives are not approved for use on this Gulfstream aircraft model: Static Dissipater additive T1502 and antifriction additives T1601 and T1602

CIS
GOST 10227-86, TS-1 & RT

French
DCSEA 134/A

JP-4 Wide Cut Type (See NOTE 5)

American
ASTMD6615
MIL-DTL-5624 (JP4 Grade)

British
Def. Stan. 91-88

Canadian
CAN/CGSB-3.22-2001

CIS
GOST 10277-86 (Grade T-2)

JP-5 High Flash-Point Type

American
MIL-DTL-5624 (JP5 Grade)

British
Def. Stan. 91-88

Canadian
3-GP-3

French
DCSEA 144/A

Fuel shall conform to the specification as listed or to subsequent revisions found in the latest approved Airplane Flight Manual (AFM).

See AFM for information on high flash point fuels.

Oil

The following oils are approved for use in the engine and APU:

5 Centistoke Type Oils:

Aeroshell Turbine Oil 500
Aeroshell Turbine Oil 560
BP Turbo Oil 2197
Oil (con’t)

Castrol Aero 5000
Exxon Turbo Oil 2197
Exxon Turbo Oil 2380
Mobil Jet Oil II
Mobil Jet Oil 254
Mobil Jet Oil 291
TurboNycoil 600
Royco 500
Royco 560

NOTE: Mixing of oils is not recommended for APU.

NOTE: Mixing of oils is not recommended but brands may be mixed if operationally essential. Oils of the above brands, when reclaimed to the approved standard for viscosity and grade, are approved for use.

Oil shall conform to the specification as listed or to subsequent revisions in the latest approved Airplane Flight Manual.

Engine Limits

Static Thrust (std. day) S.L.
Takeoff (5 minutes) 15,385 lb.
Maximum continuous 14,450 lb.

Maximum permissible engine rotor operating speeds:
N1 (low pressure compressor)
- Maximum Takeoff (see Note 14) (101.1%) 7,513 rpm
- Maximum Continuous (101.0%) 7,505 rpm
- Maximum Overspeed (20 seconds) (101.5%) 7,542 rpm
- Reverse Thrust (30 seconds) (70%) 5,201 rpm

N2 (high pressure compressor)
- Maximum Takeoff (see Note 14) (99.6%) 15,834 rpm
- Maximum Continuous (98.9%) 15,723 rpm
- Maximum Overspeed (20 seconds) (99.8%) 15,866 rpm

100% N1 equals 7,431 rpm
100% N2 equals 15,898 rpm

Maximum permissible temperatures (°C):
Turbine gas temperature measured at nozzle guide vanes ahead of first low stage pressure turbine:
- Takeoff (see Note 14) 900°
- Maximum continuous 860°
- Maximum prior to start 150°
- Maximum overtemperature (20 seconds limit) 905°
- Momentary maximum during ground starts 700°
- Momentary maximum during inflight restarts 850°
- Oil temp (minimum before accelerating for T/O) +20°
- Oil temp (minimum for starting) -30°
- Oil temp (maximum) 160°
- Fuel inlet temperature to low pressure pump at S.L. 54°
- Fuel outlet temperature from engine high pressure pump (unrestricted maximum) 158°
- Fuel outlet temperature, HP pump maximum (15 min. limit) 165°
- Fuel inlet temperature (minimum) -40°

Bleed Extraction
EPR = P50/P2: The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amount of fan bleed extraction is related to the fan entry mass flow, W1A.

<table>
<thead>
<tr>
<th>Power Range</th>
<th>Normal Flow (%)</th>
<th>Maximum Flow (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage 5</td>
<td>Stage 8</td>
</tr>
<tr>
<td>Idle to 1.06 EPR</td>
<td>*****</td>
<td>7.7</td>
</tr>
<tr>
<td>1.06 to 1.3 EPR</td>
<td>4.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Above 1.3 EPR

<table>
<thead>
<tr>
<th></th>
<th>4.2</th>
<th>*****</th>
<th>0.4</th>
<th>8.3</th>
<th>*****</th>
<th>1.8</th>
</tr>
</thead>
</table>

Auxiliary Power Unit (APU) Allied Signal - Model RE220 \{GV\}

- Rated Output Shaft Power
 - 62 hp (continuous)
 - 70 hp (5 minutes)
 - 101 hp (5 seconds)

APU (con’t)

- Maximum Generator Output Shaft Speed 12,000 rpm
- Maximum Exhaust Gas Temp (EGT) at Rated Output 1241 °F (T2 = 140 °F)
- Maximum Allowable Rotor Speed 48,320 rpm (T2 < 115 °F)
- Maximum Allowable EGT
 - Starting: 1922 °F (1050 °C)
 - [for T2 < -20 °F (-29 °C), P2 > 6.75 psia]
 - Operating: 1350 °F (732 °C)
 - [for T2 = 140 °F (60 °C)]

Airspeed Limits (CAS)

- \(V_{mo}/M_{mo} \) (Maximum operating) (mph) (KCAS)
 - See AFM for Altitude/Mach Flight Operating Envelope
 - \(V_{mo} \) (Maneuvering) 237 mph 206 knots
 - \(V_{fc} \) (Flaps down to 39°) 196 mph 170 knots
 - (Flaps down to 20°) 253 mph 220 knots
 - (Flaps down to 10°) 288 mph 250 knots
 - \(V_{lo} \) (Landing gear operation) 259 mph 225 knots
 - \(V_{le} \) (Landing gear extended) 288 mph 250 knots
 - \(V_{mco} \) (Minimum control ground) 123 mph 107 knots
 - \(V_{mca} \) (Minimum control air) 129 mph 112 knots

Maximum Operating Altitude

51,000 feet

Maximum Weight (lb.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5001 & Subs (also G550)</td>
<td>54,500</td>
<td>91,400</td>
<td>91,000</td>
<td>75,300</td>
</tr>
<tr>
<td>5001 & Subs with ASC 10 (G500)</td>
<td>54,500</td>
<td>85,500</td>
<td>85,100</td>
<td>75,300</td>
</tr>
</tbody>
</table>

Datum

For weight and balance purposes, the zero datum is 45 inches forward of the jig point at the centerline of the airplane in the nose wheel well.

M.A.C.

171.19 in. (L.E. of M.A.C. = Fuselage Station 524.74)

Fuel Capacity

Gravity or Pressure Fueling:

<table>
<thead>
<tr>
<th></th>
<th>GV-SP (G550)</th>
<th>GV-SP (G500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41,489 lb.</td>
<td>35,389 lb.</td>
</tr>
<tr>
<td>Usable</td>
<td>41,300 lb.</td>
<td>35,200 lb.</td>
</tr>
<tr>
<td>Arm*</td>
<td>+ 558.5</td>
<td>+ 551.9</td>
</tr>
</tbody>
</table>

Fuel weights based upon fuel density of 6.75 lb. per gal.
*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity

Total engine oil capacity (each engine):

- Hispano-Suiza Gearbox 25.7 lb./27.4 U.S. pints
- Usable Oil 10.4 lb./11.0 U.S. pints
 - (Arm = +785.00)

Oil weights based upon oil density of 7.5 lb. per gal.
See NOTE 1 for system oil.

Capacities shown are for engine oil tankage only.
Total engine oil is an additional 9.5 lb. per engine.
APU oil 9.00 lb./9.6 U.S. Pints
(Arm = +782.5)

Serial No. Eligible
S/N 5001 and subsequent.

C. G. Envelope
See figure on next page for GV-SP Zero Fuel Gross Weight vs. Center of Gravity
(S/N 5001 and subsequent).

GV-SP Zero Fuel Gross Weight Center of Gravity Envelope
(For S/N 5001 and Subsequent)
VIII - Model GIV-X (Transport Category), Approved August 12, 2004

The Gulfstream GIV-X is the same as the Gulfstream GIV except for the following differences:

- A Honeywell advanced flight deck display suite (common with the GV-SP) to improve flight crew situational awareness and operational capabilities
- Airframe nose common with the GV-SP
- Airframe aerodynamic improvements and engine improvements for increased range and payload
- Cabin main entry door relocated aft and fuselage 12 inch extension incorporated
- Tay 611 engine replaced with derivative Tay 611-8C. Added engine FADEC
- Redesigned thrust reverser, nacelle and pylon
- System improvements
 - Electrical power generation (common with GV-SP)
 - Dual digital cabin temperature control and pressurization (common with GV-SP)
 - Nose landing gear (common with GV-SP)
 - Replaced APU with Honeywell 36-150 APU
 - Redesigned flap/stab actuation system with digital control
 - Redesigned main landing gear wheels and brakes
 - Added flight control system hard-over protection system

NOTE: There are two variants of the GIV-X (see Note 8): (1) The G450, which is identical to the GIV-X, and (2) the G350, which has a reduced fuel capacity.

Engines

<table>
<thead>
<tr>
<th>Engines</th>
<th>2 Rolls Royce Tay Mark 611-8C (FAA Type Certificate No. E25NE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(EASA/LBA Type Certificate No. 6327)</td>
</tr>
</tbody>
</table>

Fuel

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Kerosene</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>ASTM D 1655, Jet A</td>
</tr>
<tr>
<td></td>
<td>ASTM D 1655, Jet A-1</td>
</tr>
<tr>
<td></td>
<td>MIL-T-83133, Grade JP8*</td>
</tr>
<tr>
<td></td>
<td>MIL-DTL-83133, Grade JP8</td>
</tr>
<tr>
<td>British</td>
<td>DEF STAN 91-87</td>
</tr>
<tr>
<td></td>
<td>DEF STAN 91-91</td>
</tr>
<tr>
<td>Canadian</td>
<td>CAN/CGSB-3.23</td>
</tr>
<tr>
<td>Chinese</td>
<td>GB 6537-2006 including the following fuel additives limited to the concentrations stated in Annex A of GB 6537-2006:</td>
</tr>
<tr>
<td></td>
<td>1. Static Dissipater additive: Stadis 450</td>
</tr>
<tr>
<td></td>
<td>2. Antioxidant: 2,6-ditertiary-butyl-4-methyl-phenol</td>
</tr>
<tr>
<td></td>
<td>3. Icing Inhibitor: Ethylene Glycol Monomethyl Ether or Diethylene Glycol Monomethyl Ether</td>
</tr>
<tr>
<td></td>
<td>4. Metal Deactivator: N,N’-disalicylidene 1,2-propanediarnine</td>
</tr>
<tr>
<td>Russian</td>
<td>GOST 10227-86, T-1, TS-1 & RT</td>
</tr>
<tr>
<td>French</td>
<td>DCSEA 134</td>
</tr>
<tr>
<td>CIS</td>
<td>GOST R52050-2006</td>
</tr>
<tr>
<td>JP-4 Wide Cut Type</td>
<td>(See NOTE 5)</td>
</tr>
<tr>
<td>American</td>
<td>ASTM D 1655, Jet B</td>
</tr>
<tr>
<td></td>
<td>ASTM D6615</td>
</tr>
<tr>
<td></td>
<td>MIL-PFR-5624, Grade JP4*</td>
</tr>
<tr>
<td>British</td>
<td>DEF STAN 91-86</td>
</tr>
<tr>
<td>Canadian</td>
<td>CAN/CGSB-3.22</td>
</tr>
<tr>
<td>JP-5 High Flash -</td>
<td>(See NOTE 5)</td>
</tr>
<tr>
<td>Point Type</td>
<td></td>
</tr>
<tr>
<td>American</td>
<td>MIL-DTL-5624, Grade JP5</td>
</tr>
<tr>
<td></td>
<td>MIL-PRF-5624 Grade JP5</td>
</tr>
<tr>
<td>British</td>
<td>DEF. STAN.91-88</td>
</tr>
<tr>
<td>Canadian</td>
<td>CAN 3-GP-3.24</td>
</tr>
<tr>
<td>French</td>
<td>DCSEA 144</td>
</tr>
</tbody>
</table>

Fuel shall conform to the specification as listed or to subsequent revisions
found in the latest approved Airplane Flight Manual.

*With fuel system icing inhibitor (FSII). Maximum concentration 0.15% by volume. DERD 2451 Issue 2 and 3 MIL-I-27686E. or any exact equivalent

Oil

The following oils are approved for use in the engine and APU:

3 Centistoke (Type I)
 - Aeroshell Turbo Oil 390
 - Castrol 325 Engine Oil
 - ESSO/Exxon Turbo 2389

5 Centistoke (Type II)
 - Esso/Exxon Turbo Oil 2380
 - Mobil Jet Oil II
 - Mobil Jet Oil 254
 - Castrol Aero 5000
 - Aeroshell Turbine Oil 500
 - Royco Turbine Oil 500

NOTE: Mixing of oils is not recommended for APU.

NOTE: Mixing of oils is not recommended but brands may be mixed if operationally essential. Oils of the above brands, when reclaimed to the approved Rolls-Royce standard for viscosity and grade, are approved for use.

Oil shall conform to the specification as listed or to subsequent revisions in the latest approved Airplane Flight Manual.

Engine Limits

<table>
<thead>
<tr>
<th>Static Thrust (std. day) S.L.</th>
<th>13,850 lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Takeoff (See Note 14)</td>
<td>12,420 lb.</td>
</tr>
</tbody>
</table>

Maximum permissible continuous rotor operating speeds:

<table>
<thead>
<tr>
<th>N1 (low compressor)</th>
<th>(95.5%)</th>
<th>8,015 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2 (high compressor)</td>
<td>(97.5%)</td>
<td>12,172 rpm</td>
</tr>
</tbody>
</table>

Maximum permissible temperatures (°C):

- Takeoff (See Note 14) 800°
- Maximum continuous 715°
- Momentary maximum during ground starts 700°
- Momentary maximum during airlstarts (relights) 780°
- Maximum over-temperature (20 second limit) 820°
- Oil temp (minimum for starting) -40°
- Oil temp (maximum) 105°
- Oil temp (15 minute limit) 120°
- Fuel inlet temp to engine high pressure pump 95°
- Fuel inlet temperature (15 min. limit) 130°

Maximum Permissible Air Bleed Extraction

<table>
<thead>
<tr>
<th>7th Stage HPC Bleed</th>
<th>7.0 lb./sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>12th Stage HPC Bleed (max continuous and below)</td>
<td>6.9 lb./sec</td>
</tr>
<tr>
<td>HPC Bleed Total (max continuous and below)</td>
<td>10.0 lb./sec</td>
</tr>
<tr>
<td>Fan Bleed</td>
<td>10.5 lb./sec</td>
</tr>
</tbody>
</table>

Auxiliary Power Unit (APU)

** Honeywell 36-150**

Maximum permissible exhaust gas temperature -

- Up to 60% rpm during start 985°C
- 60% - 100% during start 985°C to 757°C (linear decrease)
Running 757°C
Maximum rotor speed - all conditions 107%
APU alternator load rating 40Kva
APU rated output shaft power 61hp
(with 62.4 lb. per min. bleed air and ambient temp of 103°F)

Airspeed Limits (CAS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Va (Maneuvering)</td>
<td>4001 to 4239 with ASC 005 (G450)</td>
<td>49,000</td>
<td>74,300</td>
<td>73,900</td>
<td>66,000</td>
</tr>
<tr>
<td></td>
<td>4001 and subs with ASC 004 (G350)</td>
<td>49,000</td>
<td>71,300</td>
<td>70,900</td>
<td>66,000</td>
</tr>
<tr>
<td></td>
<td>4001 to 4239 with ASC 016 (G450 only)</td>
<td>49,000</td>
<td>75,000</td>
<td>74,600</td>
<td>66,000</td>
</tr>
<tr>
<td></td>
<td>4240 and subs with ASC 005 (G450)</td>
<td>49,000</td>
<td>75,000</td>
<td>74,600</td>
<td>66,000</td>
</tr>
</tbody>
</table>

Datum
For weight and balance purposes, the zero datum is 27 inches aft of the jig point at the centerline of the airplane in the nose wheel well or 206 inches forward of Fuselage Station 206.

M.A.C.
166.22 in. (L.E. of M.A.C. = Fuselage Station 387.7)

Fuel Capacity
Gravity or Pressure Fueling:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>29,605 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Usable</td>
<td>29,500 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arm*</td>
<td>+430.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel weights based upon fuel density of 6.75 lb. per gal.
*Arm based on ground static attitude (-1.5° FRL)

Oil Capacity
Total engine oil tank capacity 13.5 lb./14.4 U.S. pints (each engine)
Usable engine oil tank capacity 10.1 lb./10.8 U.S. pints (each engine)
(Arm = +582.00)
Oil weights based upon oil density of 7.5 lb. per gal.
Capacities shown above are for engine oil tankage only.
Total engine oil is 27 lb/28.8 US pints per engine
See NOTE 1 for system oil.

Usable APU oil 5.7 lb./6.0 U.S. Pints
(Arm = +620.0)

Serial No. Eligible
S/N 4001 and subsequent.

C.G Envelope
See figure on next page for the GIV-X Zero Fuel Gross Weight vs. Center of Gravity envelope (S/N 4001 and subsequent).
GIV-X Zero Fuel Gross Weight Center of Gravity Envelope
(For S/N 4001 and Subsequent)

<table>
<thead>
<tr>
<th>Pt. No.</th>
<th>CG</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.00</td>
<td>39800</td>
</tr>
<tr>
<td>2</td>
<td>45.00</td>
<td>38400</td>
</tr>
<tr>
<td>3</td>
<td>36.00</td>
<td>46500</td>
</tr>
<tr>
<td>4</td>
<td>45.00</td>
<td>44000</td>
</tr>
<tr>
<td>5</td>
<td>36.00</td>
<td>49000</td>
</tr>
<tr>
<td>6</td>
<td>39.75</td>
<td>49000</td>
</tr>
<tr>
<td>S</td>
<td>43.64</td>
<td>45300</td>
</tr>
</tbody>
</table>
Data Pertinent to All Models Except as Indicated

Leveling Means
Longitudinal: Lugs at right nose well door longeron STA 61.5 & 72.5
Lateral: Lugs on rear face of bulkhead STA 44.5 in nose wheel well.

Minimum Crew
2 (Pilot and Co-Pilot)

Maximum Passengers
19 - limited by emergency exit requirements

Baggage or Cargo Limitations

Aircraft S/N 1 thru 299 and 316 and subsequent, including 775, except 249 & 252:
Main cabin floor fuselage station 193 to 321.5. Dead weight cargo loading maximum uniform load over entire width of floor shall be 49 lb. per square foot. Maximum uniform load with a 20-inch clear aisle down the middle shall be 98 lb. per square ft. Maximum dead weight, cargo load on one isolated square foot, at least 30 inches from another load, shall be 260 lb., except in the middle aisle where it shall be 184 lb.

Aircraft S/N 249, 252, 300 thru 315:
Main cabin floor fuselage station 193 to 213. Dead weight cargo loading maximum uniform load over entire width of floor shall be 20 lb. per square foot. Maximum uniform load with a 20-inch clear aisle down the middle shall be 40 lb. per square foot. Maximum dead weight, cargo load on one isolated square, at least 30 inches from another load, shall be 260 lb., except in the middle aisle where it shall be 184 lb.

Main cabin floor fuselage station 213 to 321.5. Dead weight cargo loading maximum uniform load over entire width of floor shall be 49 lb. per square foot. Maximum uniform load with a 20-inch clear aisle down the middle shall be 98 lb. per square foot. Maximum dead weight, cargo load on one isolated square foot, at least 30 inches from another load, shall be 260 lb., except in the middle aisle where it shall be 184 lb.

All Aircraft, S/N 1 and subsequent:
Main cabin floor fuselage station 321.5 to 498. Dead weight cargo loading maximum uniform loading shall be 100 lb. per square foot.

Main cabin floor fuselage station 498 to 539.75. Maximum uniform loading shall be 65 lb. per square foot.

Maximum Baggage (all models excluding GV, GV-SP):
Compartment aft of fuselage station 539.75 to bulkhead or pressure dome.
Capacity - 2,000 lb. less any weight added in equipment bay
Maximum floor loading - 65 lb./sq. ft.
C.G. - STA 565 for 2000 lb. If further aft, corresponding reduction in capacity required.

Main cabin floor loading limitations, GV S/N 501 and subsequent:
Main cabin floor fuselage station 229 to 426: Dead weight cargo loading maximum uniform load over entire width of floor shall be 49 lb./ft². Maximum uniform load with a 20 inch clear aisle down the middle shall be 98 lb./ft². Maximum dead weight cargo load on one isolated square foot, at least 30 inches from another load, shall be 200 lb., except in the middle aisle where it shall be 187 lb.

Main cabin floor fuselage station 426 to 632: Dead weight cargo loading maximum uniform loading shall be 100 lb./ft².

Main cabin floor fuselage station 632 to 684: Max uniform loading shall be 65 lb./ft².

Maximum Baggage, GV S/N 501 and subsequent:
Compartment aft of fuselage station 684.00 to pressure bulkhead:
Capacity - 2500 lb. less any weight added in equipment bay
Maximum floor loading - 65 lb./ft²
Approved smoke detection system required.
Main cabin floor loading limitations, GV-SP S/N 5001 and subsequent:
Main cabin floor fuselage station 205 to 426: Dead weight cargo loading maximum uniform load over entire width of floor shall be 49 lb/ft². Maximum uniform load with a 20 inch clear aisle down the middle shall be 98 lb/ft². Maximum dead weight cargo load on one isolated square foot, at least 30 inches from another load, shall be 200 lb., except in the middle aisle where it shall be 187 lb.

Main cabin floor fuselage station 426 to 632: Dead weight cargo loading maximum uniform loading shall be 100 lb/ft².

Main cabin floor fuselage station 632 to 684: Maximum uniform loading shall be 65 lb/ft².

Maximum baggage, GV-SP S/N 5001 and subsequent:
Compartment aft of fuselage station 684.00 to pressure bulkhead:
Capacity - 2500 lb., less any weight added in equipment bay
Maximum floor loading - 65 lb/ft²
Approved smoke detection system required.

Main cabin floor loading limitations, GIV-X S/N 4001 and subsequent:
Main cabin floor forward of the overwing pressure floor (Fuselage station 145 to 321.5): Dead weight cargo loading maximum uniform load over entire width of floor is 49 pounds per square foot. Maximum uniform load with a 20-inch clear aisle down the middle is 93 pounds per square foot. Maximum dead weight load on one isolated square foot, at least 30 inches from another load, is 260 pounds except in the center aisle where it is 184 pounds. Overwing pressure floor (Fuselage station 321.5 to 498): Dead weight cargo maximum uniform loading is 100 pounds per square foot. Main cabin floor structure aft of the overwing pressure floor (Fuselage station 498 to 539.75): Dead weight cargo maximum uniform loading is 65 pounds per square foot.

Maximum baggage, GIV-X S/N 4001 and subsequent:
Compartment aft of fuselage station 539.75 to 596 (flat pressure bulkhead):
Capacity - 2,000 lb. less any weight added in equipment bay
Maximum floor loading - 65 lb./sq. ft.
C.G. - STA 565 for 2000 lb. If further aft, corresponding reduction in capacity required.

Other Operating Limitations
The aircraft must be operated in accordance with the latest FAA approved revision to the Airplane Flight Manual.

- The Model GV-SP (G500) Airplane Flight Manual is GAC-AC-G500-OPS-0001.
Control Surface Movements

Models G-1159, G-1159A and G-1159B:

<table>
<thead>
<tr>
<th>Control Surface</th>
<th>Models G-1159, G-1159A and G-1159B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>Up 24° (+1/2°, -1/2°)</td>
</tr>
<tr>
<td>Elevator trim tab</td>
<td>Up 10° (+1°, -1°)</td>
</tr>
<tr>
<td>Rudder</td>
<td>Right 22° to 22.5°</td>
</tr>
<tr>
<td>Rudder trim</td>
<td>Right 7.5° (+1°, -1°)</td>
</tr>
<tr>
<td>Ailerons</td>
<td>Up 10° (+1°, -1°)</td>
</tr>
<tr>
<td>Aileron trim</td>
<td>Up 15° (+4°, -4°)</td>
</tr>
<tr>
<td>Flaps</td>
<td>Down 39° (+0°, -1 1/2°)</td>
</tr>
</tbody>
</table>

Speed brakes:
- Airplanes with four panel speed brakes:
 - Right 43° (+3°, -3°) Left 43° (+3°, -3°)
- Airplanes with six panel speed brakes:
 - Right 26° (+2°, -2°) Left 26° (+2°, -2°)
- Ground spoiler:
 - Up 55° (+3°, -3°) (all spoilers)

Horizontal stabilizer travel range - Leading edge down:
- G-1159: S/N 1 thru 100, including 775, without ASC No. 81: (0° to -4.5°)
- G-1159: S/N 1 thru 100 with ASC No. 81, and S/N 101 thru 299: (0° to -5°)
- G-1159A, S/N 300 and subsequent, including S/N 249 and 252: (-1° to -6°)
- G-1159B: (-1° to -6°)

Model G-IV:

<table>
<thead>
<tr>
<th>Control Surface</th>
<th>Models G-1159, G-1159A and G-1159B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>Up 24° (+1/2°, -1/2°)</td>
</tr>
<tr>
<td>Elevator trim tab</td>
<td>Up 8° (+1°, -1°)</td>
</tr>
<tr>
<td>Rudder</td>
<td>Right 22° to 22.5°</td>
</tr>
<tr>
<td>Rudder trim</td>
<td>Right 7.5° (+1°, -1°)</td>
</tr>
<tr>
<td>Ailerons</td>
<td>Up 10° (+1°, -1°)</td>
</tr>
<tr>
<td>Aileron trim</td>
<td>Up 15° (+4°, -4°)</td>
</tr>
<tr>
<td>Flaps</td>
<td>Down 39° (+0°, -1 1/2°)</td>
</tr>
</tbody>
</table>

Horizontal stabilizer travel range - Leading edge down: -1° (+1/4°, -1/4°) to -4.6° (+1/4°, -1/4°)

Models GV and GV-SP:

<table>
<thead>
<tr>
<th>Control Surface</th>
<th>Models G-1159, G-1159A and G-1159B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>Up 24° (+1/2°, -1/2°)</td>
</tr>
<tr>
<td>Elevator trim tab</td>
<td>Up 8° (+1°, -1°)</td>
</tr>
<tr>
<td>Rudder</td>
<td>Right 22° to 25°</td>
</tr>
<tr>
<td>Rudder trim</td>
<td>Right 7.5° (+1°, -1°)</td>
</tr>
</tbody>
</table>

Note: Rudder trim may be offset (+3°, -3°) maximum as required for directional trim with the cockpit trim knob and rudder pedals re-referenced to zero. See FCS Rigging Procedures Report GV-MS-51.

Ailerons
- Up 11° (+1°, -2°) Down 11° (+1°, -2°)

Aileron trim
- Up 15° (+4°, -4°) Down 15° (+4°, -4°)

Flaps
- Down 39° (+1°, -1°)

Speed brakes (Right & Left):
- 4 Outb’d Panels (Flight Spoilers) Up 30° (+2°, -8°)
- 2 Inb’d Panels (Ground Spoilers) Up 30° (+2°, -5°)
- Ground spoilers (all) Up 55° (+4°, -5°)

Horizontal stabilizer travel range - Leading Edge Travel:
- Normal Operation -1.5° (+1/4°, -1/4°) to -4.6° (+1/4°, -1/4°)
- Emerg. Stab. Mode -1.25° (+1/4°, -1/4°) to -4.6° (+1/4°, -1/4°)
Model GIV-X:

<table>
<thead>
<tr>
<th>Lift Surface</th>
<th>Up</th>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevators</td>
<td>24° (+1/2°, -1/2°)</td>
<td>13° (+0°, -1°)</td>
<td></td>
</tr>
<tr>
<td>Elevator trim tab</td>
<td>8° (+1°, -1°)</td>
<td>22° (+1°, -1°)</td>
<td></td>
</tr>
<tr>
<td>Rudder</td>
<td>22° to 25.0°</td>
<td>22° to 25.0°</td>
<td></td>
</tr>
<tr>
<td>Ailerons</td>
<td>15° (+4°, -4°)</td>
<td>15° (+4°, -4°)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim Tab</th>
<th>Up</th>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator trim tab</td>
<td>15° (+4°, -4°)</td>
<td>15° (+4°, -4°)</td>
<td></td>
</tr>
<tr>
<td>Aileron trim</td>
<td>10° (+1°, -1°)</td>
<td>10° (+1°, -1°)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forces</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudder</td>
<td>22° to 25.0°</td>
<td>22° to 25.0°</td>
</tr>
<tr>
<td>Aileron</td>
<td>10° (+1°, -1°)</td>
<td>10° (+1°, -1°)</td>
</tr>
</tbody>
</table>

Horizontal stabilizer travel range - Leading edge down: -1° (+1/4°, -1/4°) to -4.6° (+1/4°, -1/4°)

Certification Basis

Model G-1159: S/N 1 thru 299, and 775:

CAR 4b dated December 31, 1953, including Amendments 4b-1 thru 4b-14, Special Regulations SR422B and SR450A, and Special Conditions in Attachment A of FAA letter to Grumman dated September 27, 1965, plus FAR 25.1325 (effective February 1, 1965); 25.175 (effective Mar. 1, 1965) in lieu of 4b.155(b), and exemption: No. 695A, CAR 4b.437, "Fuel Jettisoning System," FAR Part 36 par. 36.1(c)(2) for airplane S/N 1 thru 165 and 775 approved for a 62,000 lb. takeoff weight and FAR Part 36 Appendix C for airplane S/N 166 thru 299 except 249, 252, and 775. Type Certificate A12EA issued October 19, 1967. Date of application for Type Certificate was June 24, 1964.

Compliance with the following optional requirements has been established:

Data covering ditching requirements of 4b.361, including 4b.362(d) and 4b.742(e) (but excluding 4b.645 and 4b.646) are approved. When the operating rules require emergency ditching equipment compliance with 4b.645 and 4b.646 must be demonstrated. Gulfstream Report 1159-GER-7 entitled "Outfitting Requirements for FAA Certification for Ditching" provides an acceptable means for showing compliance with 4b.645 and 4b.646. Airplane Flight Manual Revision 13 must be incorporated.

Equivalent Safety Findings:

(1) CAR 4b.160 and FAR 25.201, Stall Demonstration
(2) CAR 4b.362(b)(4) and FAR 25.807(a)(4) Emergency Exits

Model G-1159A: S/N 249, 252, 300 and subsequent:

Part 25 of the FAR effective February 1, 1965, and Amendments 25-2 through 25-8, 25-10, 25-12, 25-16 through 25-22, 25-24, 25-26, 25-27, 25-29 through 25-34, 25-37, 25-40 (as applicable to a new APU installation); FAR 25.1309 of Amendment 25-41 and FAR 25.1329 of Part 25 dated February 1, 1965 (as applied to a new autopilot installation); FAR 25.994 (crashworthiness fuel system components); and FAR 25.581 (lightning protection) of Amendment 25-23; Special FAR 27 through Amendment 2 (fuel venting emission); FAR 36 through Amendment 8 (noise requirements).

The special conditions contained in the FAA's letter to Grumman dated September 27, 1965, applicable to the Gulfstream Model G-1159 airplane, are also applicable to the Gulfstream Model G-1159A airplane, except that reference to "4b.450" in the "Cooling Systems" special conditions is replaced by "FAR 25.1043 contained in Part 25 of the FAR effective February 1, 1965. In addition, special conditions pertaining to dynamic gust loads contained in the enclosure to FAA AEA-212 letter dated July 22, 1980.

Compliance with the following Optional Requirements has been established:

Data covering ditching requirements of 25.801, including 25.807(d) and 25.1585(a) (but excluding 25.1411) are approved. When the operating rules require emergency ditching equipment, compliance with 25.1411 and 25.1415 must be demonstrated. Gulfstream Report 1159-GER-7 entitled "Outfitting Requirements for FAA Certification for Ditching" provides an acceptable means for showing compliance with 25.1411 and 25.1415.
Equivalent Safety Findings:
(1) CAR 4b.160 and FAR 25.201, Stall Demonstration
(2) CAR 4b.362(b)(4) and FAR 25.807(a)(4) Emergency Exits
(3) FAR 25.773(b) (2), Direct Vision Window

Model G-1159B; S/N 1 through 299, including 775:

Fuselage, Empennage, Autopilot and Noise:
CAR 4b, dated December 31, 1953, including Amendments 4b-1 thru 4b-14, Special Regulation SR450A, and Special Conditions in Attachment A of FAA letter to Grumman dated September 27, 1965, plus FAR 25.1325 (effective February 1, 1965); FAR 25.175 (effective March 1, 1965) in lieu of CAR 4b.155(b); FAR 36.7(d)(3)(ii); CAR 4b.450, Cooling Systems.

Wing Assembly, Landing Gear, Fuselage and Empennage Modifications:

The special conditions contained in the FAA’s letter to Grumman dated September 27, 1965, applicable to Gulfstream Model G-1159 airplane, are also applicable to the Gulfstream Model G-1159B airplane. In addition, the special condition pertaining to dynamic gust loads, contained in the enclosure to FAA letter AEA-212, dated July 22, 1980, is applicable to the Model G-1159B airplane.

Compliance with the following Optional Requirements has been established:
Data covering ditching requirements of 4b.361, including 4b.362(d) and 4b.742(e) (but excluding 4b.645 and 4b.646) are approved. When operating rules require emergency ditching equipment, compliance with 4b.645 and 4b.646 must be demonstrated.
Gulfstream Report 1159-GER-7 entitled "Outfitting Requirements for FAA Certification for Ditching" provides an acceptable means for showing compliance with 4b.645 and 4b.646.

Equivalent Safety Findings:
(1) CAR 4b.160 and FAR 25.201, Stall Demonstration
(2) CAR 4b.362(b)(4) and FAR 25.807(a)(4) Emergency Exits

Models G-1159, G1159A, and G-1159B:

FAR 25.771, Amendment 4. A lockable door is not required between the pilot and passenger compartments.

Model G-IV; S/N 1000 and subsequent:

FAR Part 25, effective February 1, 1965, including Amendments 25-1 through 25-56, except for the following sections which are limited to showing compliance with the amendments indicated:

<table>
<thead>
<tr>
<th>Section</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.109</td>
<td>FAR 25, dated February 1, 1965</td>
</tr>
<tr>
<td>25.571</td>
<td>25-22 (as applies to fuselage and empennage)</td>
</tr>
<tr>
<td>25.671</td>
<td>FAR 25, dated February 1, 1965</td>
</tr>
<tr>
<td>25.807(c)(2)</td>
<td>25-15</td>
</tr>
<tr>
<td>25.813</td>
<td>FAR 25, dated February 1, 1965</td>
</tr>
</tbody>
</table>

FAR 36, including Amendments 36-1 through 36-12.
SFAR 27, including Amendments 27-1 through 27-5.

Compliance with the following Optional Ditching Requirements has been established:
Data covering ditching requirements of 25.801, including 25.563, 25.807(d) and 25.1585(a) (but excluding 25.1411) are approved. When the operating rules
require emergency ditching equipment, compliance with 25.1411 and 25.1415 must be demonstrated. Gulfstream Report 1159-GER-7 entitled “Outfitting Requirements for FAA Certification for Ditching” provides an acceptable means for showing compliance with 25.1411 and 25.1415.

Equivalent Safety Findings:
1. FAR 25.201, Stall Demonstration
2. FAR 25.729(e)(2), Landing Gear Warning Horn
3. FAR 25.773(b)(2), Direct Vision Window
4. FAR 25.807(a)(4), effective February 1, 1965, Oval Emergency exit Windows with Horizontal Major Axis
5. FAR 25.811(d) and 25.812(b), Emergency Exit Marker, Locator, and Bulkhead/Divider Signs

Model GV: S/N 501 and subsequent:

FAR Part 25, effective February 1, 1965, including Amendments 25-1 through 25-81, except for the following sections which are limited to showing compliance with the amendments indicated:

<table>
<thead>
<tr>
<th>Section</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.109</td>
<td>FAR 25, dated February 1, 1965</td>
</tr>
<tr>
<td>25.807(c)(2)</td>
<td>25-15</td>
</tr>
<tr>
<td>25.813</td>
<td>FAR 25, dated February 1, 1965</td>
</tr>
</tbody>
</table>

FAR 34, including Amendments 34-1.
FAR 36, including Amendments 36-1 through 36-21

Shoulder harness on all seats will be in lieu of demonstrated compliance to the test requirements of FAR 25.562(c)(5) and (c)(6) per Amendment 25-64. Compliance with the requirements of FAR 25.785 in reference to FAR 25.562 (c)(5) and (c)(6) need not be demonstrated due to this concession.

Note: The certification basis of the GV regarding 25.562 was established based on FAA understanding that this model will not operate in part 121 service. Therefore, installation of shoulder harnesses in lieu of demonstrated compliance to 25.562(c)(5) and (c)(6) applies only to aircraft not engaged in part 121 passenger carrying service. If the aircraft is operated in part 121, full compliance to the requirements of 25.562 (including paragraphs (c)(5) and (c)(6)) and 25.785 must be shown.

Compliance with the Optional Ditching Requirements has been established as follows: Data covering the ditching requirements of FAR 25.801, including 25.563, 25.807(e), and 25.1585(a), but excluding 25.1411, are approved. When the operating rules require emergency ditching equipment, compliance with 25.1411 and 25.1415 must be demonstrated. Gulfstream Report 1159-GER-7, entitled “Outfitting Requirements for FAA Certification for Ditching” provides an acceptable means for showing compliance with 25.1411 and 25.1415.

Special Conditions:

NOTE: The high altitude special condition includes pressurization system requirements, as well as damage tolerance requirements on the pressure vessel. Therefore, any changes to the pressurization system or modifications or repairs to the pressure vessel must be approved in accordance with the requirements defined in the special condition.

The damage tolerance requirements in the special condition are specified in terms of cabin altitude time history, which is a function of the cabin leak rate. The specified cabin altitude time history requirement can be met with a pressure vessel opening of 7.2 square inches effective area (which considers the appropriate discharge coefficient assuming an emergency descent). The determination of an equivalent crack length will depend upon the particular location of the crack, the pressure vessel configuration in that location, the direction of the crack, etc. The approval of modifications and/or repairs must take into account the requirements of the special condition and how they apply to the particular location and
configuration being modified or required. The resulting inspection program must also consider other applicable structural criteria.

Exemptions: No. 6436 [25.571(c)(1)], Bird Impact Speed

Equivalent Safety Findings:
(1) FAR 25.103, Stall Speeds defined by Vs1g in lieu of Vmin
(2) FAR 25.341, JAR Discrete Tuned Gust in lieu of Static Gust
(3) FAR 25.807(a)(4), effective February 1, 1965, Oval Emergency Windows with Horizontal Major Axis
(4) FAR 25.811(d) and 25.812(b), Emergency Exit Marker, Locator, and Bulkhead/Divider Signs
(5) FAR 25.933, Prevention of Inadvertent Inflight Thrust Reverser Deployment
(6) FAR 25.562(c)(8) and FAR 25.807(g)(2), “Seat Deformation into Emergency Exits,”

(documented in TAD ELOS Memo ST8906AT-T-A-10)

Model GV-SP: S/N 5001 and subsequent

FAR Part 25, effective February 1, 1965, including Amendments 25-1 through 25-98, with the following exceptions:

- Shoulder harnesses on all seats will be provided in lieu of demonstrated compliance to the test requirements of FAR 25.562(c)(5) and (c)(6) of Amendment 25-64. Compliance with the requirements of FAR 25.785 in reference to FAR 25.562(c)(5) and (c)(6) are not demonstrated due to this concession.

 Note: The certification basis of the GV-SP regarding 25.562 was established based on FAA understanding that this model will not operate in part 121 service. Therefore, installation of shoulder harnesses in lieu of demonstrated compliance to 25.562(c)(5) and (c)(6) applies only to aircraft not engaged in part 121 passenger carrying service. If the aircraft is operated in part 121, full compliance to the requirements of 25.562 (including paragraphs (c)(5) and (c)(6)) and 25.785 must be shown.

- The requirements of FAR 25.571 at Amdt 25-98 are limited to the fuselage and fuselage changes only. The remainder of the aircraft structure is certified to the requirements of 25.571 at Amdt 25-81.

FAR Part 34, including Amendments 34-1 through 34-3.
FAR Part 36, including Amendments 36-1 through 36-23, S/N 5001 – S/N 5288.
FAR Part 36, including Amendments 36-1 through 36-28, Stage 4, S/N 5289 and subsequent.

Compliance with the Optional Ditching Requirements has been established as follows: Data covering the ditching requirements of FAR 25.801, including 25.563, 25.807(e), and 25.1585(a), but excluding 25.1411, are approved. When the operating rules require emergency ditching equipment, compliance with 25.1411 and 25.1415 must be demonstrated. Gulfstream Report 1159-GER-7, entitled “Outfitting Requirements for FAA Certification for Ditching” provides an acceptable means for showing compliance with 25.1411 and 25.1415.

Special Conditions:
No. 25-262-SC, HIRF (High Intensity Radiated Fields).
No. 25-342-SC, Windshield Coating in Lieu of Wipers
No. 25-450-SC, Isolation or Aircraft Electronic System Security Protection from Unauthorized Internal Access

Exemptions:
No. 7946 [FAR 25.813(e)], Mid-Cabin Doors Between Passenger Compartments.
No. 8004, 8142 [FAR 25.901(c)], Uncontrollable High Thrust Failure Conditions.
NOTE: The FAA has concluded that the occurrence of any uncontrollable high thrust failure condition, or any of the associated causal failures listed in Section 05-50-00 of the applicable airplane Maintenance Manual “may endanger the safe operation of an airplane” and hence are reportable under FAR 121.703, 125.409 and 135.415.
No. 10044 [FAR 25.1447(c)(1)], Passenger Oxygen Equipment Deployed at 15,000 feet
NOTE: Exemption permits passenger oxygen mask deployment at cabin pressure altitudes of 15,750 ± 250 feet when operating into and out of airports with landing-field elevations between 14,000 and 15,000 feet.

Equivalent Safety Findings:
(1) FAR 25.807(g)(2), Gulfstream Overwing Emergency Exit Windows, TAD ELOS Memo No. AT5177AT-T-A-2
A crewmember trained in evacuation is an additional required crewmember on all flights of 10 to 19 passengers. The required pilot and co-pilot cannot serve this function. The additional crewmember must be trained in the optimum method for evacuating through the Gulfstream elliptical exits and in procedures for directing passenger flow to prevent someone who does not fit through an elliptical exit from blocking it so that others cannot use it. Each operator must establish and maintain a training program for this additional crewmember (to include an initial and recurrent curriculum) in accordance with Gulfstream Document G500-OMS-1, Revision 1 (for G500 operations) or G550-OMS-1, Revision 1 (for G550 operations), and must keep a record of that training available for inspection by the FAA. A pre-flight briefing on the configuration specific egress procedures and exits of the airplane must be provided to all passengers before each flight. This briefing must include a detailed explanation of the optimum method for evacuating through the overwing Gulfstream elliptical exits, which is dependant upon the interior configuration inboard of the exit.

(2) FAR 25.811(d) and 25.812(b), Emergency Exit Marker, Locator and Bulkhead/Divider Signs, TAD ELOS Memo No. AT5177AT-T-C-1

(3) FAR 25.841(b)(6), Cabin Pressurization - High Altitude Takeoff and Landing Operations, TAD ELOS Memo No. AT5177AT-T-S-29

(5) FAR 25.813(c)(2)(ii), "Emergency Exit Access," TAD ELOS Memo DAS3567Al-C-3

(6) FAR 25.562(c)(8) and FAR 25.807(g)(2), "Seat Deformation into Emergency Exits," (documented in TAD ELOS Memo ST8906AT-T-A-10)

Model GIV-X: S/N 4001 and subsequent

14 CFR Part 25, effective February 1, 1965, including Amendments 25-1 through 25-101 with the exceptions listed below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.21(e)</td>
<td>Proof of compliance.</td>
<td>25-7</td>
</tr>
<tr>
<td>25.305</td>
<td>Strength and deformation.</td>
<td>25-54, 25-86**</td>
</tr>
<tr>
<td>25.321</td>
<td>Flight loads – General.</td>
<td>25-23, 25-86**</td>
</tr>
<tr>
<td>25.333</td>
<td>Flight maneuvering envelope.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.335(b)</td>
<td>Design airspeeds (speed margin).</td>
<td>25-23</td>
</tr>
<tr>
<td>25.341</td>
<td>Gust and turbulence loads.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.343</td>
<td>Design fuel and oil loads.</td>
<td>25-18, 25-86**</td>
</tr>
<tr>
<td>25.365</td>
<td>Pressurized compartment loads.</td>
<td>25-54, 25-87**</td>
</tr>
<tr>
<td>25.373</td>
<td>Speed control devices.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.391</td>
<td>Control surface loads – General.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.427</td>
<td>Unsymmetrical loads.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.445</td>
<td>Auxiliary aerodynamic surfaces.</td>
<td>25-0, 25-86**</td>
</tr>
<tr>
<td>25.459</td>
<td>Special devices.</td>
<td>25-0*</td>
</tr>
<tr>
<td>25.491</td>
<td>Takeoff run</td>
<td>25-0, 25-91**</td>
</tr>
<tr>
<td>25.561</td>
<td>Emergency landing conditions</td>
<td>25-23, 25-64 (seats), 25-91 (new structure)**</td>
</tr>
<tr>
<td>25.571</td>
<td>Damage tolerance and fatigue evaluation of structure.</td>
<td>25-54 (wing and empennage) 25-96 (fuselage changes)**</td>
</tr>
<tr>
<td>25.671</td>
<td>Control systems-General.</td>
<td>25-0</td>
</tr>
<tr>
<td>25.677(c)</td>
<td>Trim systems</td>
<td>25-0</td>
</tr>
<tr>
<td>25.693</td>
<td>Joints</td>
<td>25-0*</td>
</tr>
<tr>
<td>25.695</td>
<td>Power-boost and power-operated control system</td>
<td>25-0</td>
</tr>
<tr>
<td>25.807</td>
<td>Emergency exits</td>
<td>25-55*</td>
</tr>
<tr>
<td>25.807(c)(2),(d)(4)</td>
<td>Emergency exits</td>
<td>25-15*</td>
</tr>
<tr>
<td>25.813(a),(b),(c),(d),(f)</td>
<td>Emergency exit access</td>
<td>25-46*</td>
</tr>
</tbody>
</table>
25.841 Pressurized cabins 25-38, 25-87**
25.857 Cargo compartment classification 25-32*
25.858 Cargo or baggage compartment smoke or fire detection systems.
25.963 Fuel Tanks 25-40*
25.973 Fuel tank filler connection 25-40*
25.1013 Oil tanks 25-36*
25.1447 Equipment standards for oxygen dispensing units 25-41, 25-87**
25.1517 Rough air speed, VRA 25-86 (new paragraph-NA)*
25.1557 Miscellaneous markings and pounds

* These systems have no changes from the basic GIV model; therefore the paragraphs remain at the original GIV certification basis and the later amendment was not adopted. Amendment 25-0 is the original published version of Part 25, February 1, 1965.

** Unmodified structure remains in compliance with the earlier amendment listed. New or modified structure is in compliance with the later amendment level listed.

FAR Part 34, Amendment 34-3
FAR Part 36, Amendment 36-24 S/N 4001 – 4200.
FAR Part 36, including Amendments 36-1 through 36-28. Stage 4, S/N 4201 and subsequent.

Shoulder harness on all seats will be in lieu of demonstrated compliance to the test requirements of §25.562(c)(5) and (c)(6) per Amendment 25-64. Compliance to the test requirements of §25.785 in reference to §25.562(c)(5) and (c)(6) need not be demonstrated due to this concession. These provisions are acceptable for single or multiple occupant seating systems which are forward, aft, or side facing.

Note: The certification basis of the GIV-X regarding 25.562 was established based on FAA understanding that this model will not operate in part 121 service. Therefore, installation of shoulder harnesses in lieu of demonstrated compliance to 25.562(c)(5) and (c)(6) applies only to aircraft not engaged in part 121 passenger carrying service. If the aircraft is operated in part 121, full compliance to the requirements of 25.562 (including paragraphs (c)(5) and (c)(6)) and 25.785 must be shown.

Compliance with the Optional Ditching Requirements has been established as follows: Data covering the ditching requirements of 14 CFR Part 25.801, including 25.563, 25.807 and 25.1585(a), but excluding 25.1411, are approved. When the operating rules require emergency ditching equipment, compliance with Parts 25.1411 and 25.1415 must be demonstrated. Gulfstream Report no. 1159-GER-7, entitled “Outfitting Requirements for FAA Certification for Ditching”, provides an acceptable means for showing compliance with Parts 25.1411 and 25.1415.

FAR 25.813(c) at Amendment 25-46 is not included in the certification basis.

Special Conditions:
No. 25-262-SC, HIRF (High Intensity Radiated Fields).
No. 25-342-SC, Windshield Coating in Lieu of Wipers
No. 25-450-SC, Isolation or Aircraft Electronic System Security Protection from Unauthorized Internal Access

Exemptions:
No. 8142 [FAR 25.901(c)], Uncontrolled High Thrust Failure Condition.
NOTE: The FAA has concluded that the occurrence of any uncontrollable high thrust failure condition, or any of the associated causal failures listed in Section 05-50-00 of the applicable airplane Maintenance Manual “may endanger the safe operation of an airplane” and hence are reportable under FAR 121.703, 125.409, and 135.415.
No. 10044 [FAR 25.1447(c)(1)], Passenger Oxygen Equipment Deployed at 15,000 feet
NOTE: Exemption permits passenger oxygen mask deployment at cabin pressure altitudes of 15,750 ± 250 feet when operating into and out of airports with landing-field elevations between 14,000 and 15,000 feet.

Equivalent Safety Findings:
(1) FAR 25.807, Elliptical Overwing Emergency Exits with a Horizontal Major Axis, TAD ELOS Memo No. AT5080AT-T-A-2
(2) FAR 25.811(d) and 25.812(b), Emergency Exit Marker, Locator, and Bulkhead Divider Signs, TAD ELOS Memo No. AT5177AT-T-C-1
(3) FAR 25.841(b)(6), Cabin Pressurization – High Altitude Takeoff and Landing Field Elevations, TAD ELOS Memo No. AT5177AT-T-S-29
(5) FAR 25.933, Flight Critical Thrust Reverser, TAD ELOS Memo No. AT5080AT-T-P-1
(6) FAR 25.813(c)(2)(ii), "Emergency Exit Access,” TAD ELOS Memo DAS3567Al-C-3
(7) FAR 25.562(c)(8) and FAR 25.807(g)(2), “Seat Deformation into Emergency Exits,” (documented in TAD ELOS Memo ST8906AT-T-A-10)

Production Basis Models G-1159, G-1159A, G-1159B, G-IV, GV-SP and GIV-X:
Production Certificate No. 23, issued June 11, 1968;
Production Certificate No. 507, issued July 17, 1968;
Production Certificate No. 7SO, issued September 1, 1978; reissued September 22, 1980;
See NOTE 7 and NOTE 8.

Equipment
The basic required equipment as prescribed in the applicable airworthiness regulations (see Certification Basis) must be installed in the aircraft for certification. Approved equipment is shown in Grumman G-1159 Type Design Equipment List, 1159-GER-1, or Gulfstream III G-1159A Type Design Equipment List, 1159A-GER-37, latest FAA approved revision. For the Models G-IV, GV, GV-SP and GIV-X, see the Illustrated Parts Catalog (IPC) for an approved equipment listing. In addition, the following items of equipment are required:
(a) When an airplane is outfitted to carry passengers, an FAA approved passenger oxygen system must be installed.
(b) FAA Approved Airplane Flight Manual.

NOTE 1. Weight and Balance
(a) Current weight and balance report, including list of equipment included in certificated empty weight, and loading instructions when necessary, must be provided for each airplane at the time of original certification. The weight and balance report shall include as part of the empty weight, system fuel, total oil and hydraulic fluid.
(b) System fuel: The weight of all fuel required to fill all lines and tanks up to zero/readable fuel point on the fuel gages in the most critical flight attitude.
1. G-1159 airplanes (CAR 4b.416):
 (i) S/N 1 through 299 without tip tanks:
 Unusable fuel - 120 lb. total
 Fuel lines - 44 lb. total
 System fuel - 164 lb. Total
 (ii) S/N 1 through 299 having tip tanks installed (ASC 200):
 Unusable - 136 lb. total
 Fuel lines - 50 lb. total
 System fuel - 186 lb. Total
2. G-1159A and G-1159B airplanes (FAR 25.959):
 (i) All serial numbers:
 Unusable fuel* - 114 lb. total
 Fuel lines - 44 lb. total
 System fuel - 158 lb. total
 *Includes 26 lb. undrainable.
3. G-IV airplanes (FAR 25.959):
 (i) All serial numbers:
4. **GV airplanes (FAR 25.959):**
 (i) S/N 501 through 549 without ASC 50:
 Unusable fuel* - 480 lb.
 Fuel lines - 30 lb.
 System fuel - 510 lb.
 (ii) S/N 550 & subs, and S/N 501 through 549 with ASC 50:
 Unusable fuel* - 189 lb.
 Fuel lines - 30 lb.
 System fuel - 219 lb.
 *Includes 32 lb. undrainable

5. **GV-SP airplanes (FAR 25.959):**
 (i) S/N 5001 and subsequent
 Unusable fuel* - 189 lb.
 Fuel lines - 30 lb.
 System fuel - 219 lb.
 *Includes 32 lb. undrainable

6. **GIV-X airplanes (FAR 25.959)**
 (i) S/N 4001 and subsequent
 Unusable fuel* - 105 lb.
 Fuel lines - 45 lb.
 System fuel - 150 lb.
 *Includes 13 lb. undrainable

(c) System oil: The weight of oil remaining in the engine lines and tanks after subtracting the oil in the tanks which is above the "zero gage" levels.

(d) The above "unusable" fuel is that amount of fuel in the tanks, including tank trapped fuel as defined in CAR 4h.416 or FAR 25.959, which is unavailable to the engines under critical flight conditions. The usable fuel capacity is given under section entitled "Fuel Capacity" for each airplane model. The "unusable" fuel is included in the system fuel as indicated in (a) above and need not be accounted for separately. See FAA approved Airplane Flight Manual for information concerning the following:

 (1) Maximum fuel unbalance between left and right tanks for take-off and in-flight operations.
 (2) Recommended airplane ground attitude to obtain equal fuel quantities during servicing.
 (3) Fuel additives.

NOTE 2. Placards:

NOTE 3. Retirement Times:

The retirement times of fatigue critical life limited components are listed in Section IV, Chapter 5 of the appropriate Gulfstream Aerospace Model G-1159 (GII), G-1159A (GIII), G-1159B (GIIB), or G-IV. Retirement times for the GV, GV-SP and GIV-X are listed in Section 05-10-00 of the applicable Airplane Maintenance Manual. The retirement times of these life limited components cannot be altered without FAA Engineering approval.

For airplanes having time (landings) in more than one configuration, contact Gulfstream Aerospace Engineering for remaining life limitations.

NOTE 4. Use of CASC Regulators:

In the event the CASC 146 regulators are used, the aircraft is limited to 18,000 ft. altitude, unless Gulfstream American G-1159 Aircraft Service Change 17 or Drawing No. 1159RDF163D is incorporated. When the CASC 174 fuel flow regulator is installed, Aircraft Service Change 52 must also be incorporated.
NOTE 5. **Use of JP-4 Fuel:**

The use of JP-4 fuel (wide cut) as agreed to by the operator, Rolls-Royce, and the appropriate airworthiness authority may result in a reduction of HP fuel pump life.

NOTE 6. **Aircraft Service Changes:**

The following are the more significant Aircraft Service Changes (ASC's) for the respective model aircraft, dealing primarily with weight limit changes, fuel system changes, and service difficulty corrections. This is not the complete list of ASC's for any of these models.

NOTE: Gulfstream model aircraft GIV, GIV-X, GV & GV-SP having installed certain Aircraft Service Changes (ASCs) are compliant to 14 CFR Part 36, through amendment 36-28, Stage 4 Noise requirements. Substantiating data is documented in Gulfstream reports GIV-GER-423, GAC-CR-4058, GIVX-GER-1642, GIVX-GER-7117 and GVSP-GER-5866, each model specific ASC is identified below in each model section.

Model G-1159 (GII):

Aircraft Service Change (ASC) 10A, "Wing-Fuel Balance Lines - Modification of."

Applicable to S/N 1 through 82 and S/N 775.

Aircraft Service Change (ASC) 41, "Increased Gross Weight Wing Modifications."

Applicable to S/N 1 through 82 and S/N 775.

Aircraft Service Change (ASC) 81, "62,500 Pound Increased Gross Weight Modification."

Applicable to S/N 1 through 100 and S/N 775.

Aircraft Service Change (ASC) 175, "Exhaust (ATA No. 78) Noise Abatement Program Thrust Reverser Installation."

Applicable to S/N 1 through 165 and S/N 775.

Aircraft Service Change (ASC) 200, "Fuel Tip Tanks - Installation Of."

Applicable to S/N 1 through 216 and S/N 775.

Aircraft Service Change (ASC) 226, "Drag Brace Penetration Prevention."

Applicable to S/N 1 through 208 and S/N 775.

Aircraft Service Change (ASC) 233, "Installation of Tip Cap."

Applicable to S/N 1 through 216 and S/N 775 with ASC 200 and S/N 217 and subs, except S/N 775.

Aircraft Service Change (ASC) 256, "Increased Gross Weight (65,300 lb. without Tip Tanks)."

Applicable to S/N 1 and subsequent.

Aircraft Service Change (ASC) 299, "45,000 Foot Operating Altitude."

Applicable to S/N 1 and subsequent.

Model G-1159A (GIII):

Aircraft Service Change (ASC) 30, "Increased Fuel Capacity to 28, 300 lb., G-1159A."

Applicable to all S/N 249, 252, 300 through 371, and 875.

Aircraft Service Change (ASC) 70, "Increased Gross Weights, G-1159A."

Applicable to S/N 249, 252, 300 through 426, and 875.

Model G-1159B (GIIB):

Aircraft Service Change (ASC) 252, "Increased Fuel Capacity to 28,300 lb., G-1159B."

Applicable to all G-1159B S/N.

Aircraft Service Change (ASC) 275, "Increased Gross Weights, G-1159B."

Applicable to all G-1159B S/N.
Model GIV:

Aircraft Service Change (ASC) 61, "49,000 lb. Zero Fuel Gross Weight Increase (with Speed
Restriction), G-IV."
Applicable to S/N 1000 through 1213.

Aircraft Service Change (ASC) 190, "Increased Ramp, Landing and Zero Fuel Gross Weight, G-IV."
Applicable to S/N 1000 through 1213.

Aircraft Service Change (ASC) 261, "49,000 lb. Zero Fuel Gross Weight Increase, G-IV."
Applicable to S/N 1000 through 1213.
Aircraft Service Change (ASC) 436, "G300 Modification" will designate those aircraft as Model G-IV
(G300). Those aircraft shall be operated under Airplane Flight Manual GAC-AC-G300-OPS-0001.
Applicable to S/N 1500 and subsequent.

Aircraft Service Change (ASC) 440, "G400 Modification" will designate those aircraft as Model G-IV
(G400). Those aircraft shall be operated under Airplane Flight Manual GAC-AC-G400-OPS-0001.
Applicable to S/N 1500 and subsequent.

Aircraft Service Change (ASC) 465 “Auxiliary Power Unit (APU) 36-150(G) Installation.”
Applicable to S/N 1000 to S/N 1535.

Aircraft Service Change (ASC) 485B “GIV Auxiliary Power Unit (APU) Enclosure –Thermal Barrier
Installation to S/N 1311-1535

Aircraft Service Change (ASC) 487 “GIV Stage 4” Applicable to S/N 1001-1535

Model GV:

Aircraft Service Change (ASC) 50, "Aft Fuel Pickups-Location, GV.
Applicable to S/N 501 through 548.

Aircraft Service Change (ASC) 73A, "Honeywell Enhancement-Winter Certification, (includes 56021 IAC,
45% CG Expansion, and Revised Stall Barrier Activation Schedule), GV”.
Applicable to S/N 501 through 569.

Aircraft Service Change (ASC) 198A “GV Auxiliary Power Unit (APU) Enclosure –Thermal Barrier
Installation to S/N 514-693 & 699

Aircraft Service Change (ASC) 197 “GV Stage 4” Applicable to S/N 501-693 including 699

Aircraft Service Change (ASC) 213 “Maximum Zero Fuel Weight 56,000” Applicable to S/N 521, 542, 571,
590, 620, 624, 645, 652, and 663.

Model GV-SP:

Aircraft Service Change (ASC) 10, "G500 Modification" will designate those aircraft as Model GV-SP
Applicable to S/N 5001 and subsequent.

Aircraft Service Change (ASC) 11, "G550 Modification" will designate those aircraft as Model GV-SP
Applicable to S/N 5001 and subsequent.

Aircraft Service Change (ASC) 035A, “European Aviation Safety Agency (EASA)/Joint Aviation
Authorities (JAA) Certification Basic Requirements” converts aircraft to the configuration required by the
EASA Type Certificate for the GV-SP (No. EASA.IM.A.070). Data supporting ASC 035A are FAA
approved for GV-SP aircraft under Gulfstream control specifically being prepared for and prior to export to
an EASA member country, or to a country that requires the EASA Type Design configuration. Following
transfer to the foreign registry, if the aircraft is returned to U.S. registration and an application for Standard
Airworthiness is submitted, then this ASC must be removed and the aircraft returned to its U.S. Type Design
configuration. Aircraft fitted with ASC 035A shall be operated under the latest approved version of Airplane
Flight Manual, GAC-AC-G500-OPS-0001 (for aircraft with ASC 10) or GAC-AC-G550-OPS-0001 (for

Applicable to S/N 5001 and subsequent.

Aircraft Service Change (ASC) 090A “GVSP Auxiliary Power Unit (APU) Enclosure – Thermal Barrier Installation to S/N 5001-5249 excluding 5011, 5225, and 5245

Aircraft Service Change (ASC) 089 “GVSP Stage 4” Applicable to S/N 5001-5288

Model GIV-X:

Aircraft Service Change (ASC) 002A, “European Aviation Safety Agency (EASA)/Joint Aviation Authorities (JAA) Certification Basic Requirements” converts aircraft to the configuration required by the EASA Type Certificate for the GIV-X (No. EASA.IM.A.070). Data supporting ASC 002A are FAA approved for GIV-X aircraft under Gulfstream control specifically being prepared for and prior to export to an EASA member country, or to a country that requires the EASA Type Design configuration. Following transfer to the foreign registry, if the aircraft is returned to U.S. registration and an application for Standard Airworthiness is submitted, then this ASC must be removed and the aircraft returned to its U.S. Type Design configuration. Aircraft fitted with ASC 002A shall be operated under the latest approved version of Airplane Fight Manual GAC-AC-G350-OPS-0001 (for aircraft with ASC 004) or GAC-AC-G450-OPS-0001 (for aircraft with ASC 005), plus Airplane Fight Manual Supplement No. G450-2008-01 (applicable to both the G350 and G450 variants).

Applicable to S/N 4001 and subsequent.

Aircraft Service Change (ASC) 004, "G350 Modification" will designate those aircraft as Model GIV-X (G350). Those aircraft shall be operated under Airplane Fight Manual GAC-AC-G350-OPS-0001.

Applicable to S/N 4001 and subsequent.

Aircraft Service Change (ASC) 005, "G450 Modification" will designate those aircraft as Model GIV-X (G450). Those aircraft shall be operated under Airplane Fight Manual GAC-AC-G450-OPS-0001.

Applicable to S/N 4001 and subsequent.

Aircraft Service Change (ASC) 016, "G450 Maximum Takeoff Gross Weight Increase." Applicable to S/N 4001 and subsequent.

Aircraft Service Change (ASC) 064 “GIV-X Auxiliary Power Unit (APU) Enclosure – Thermal Barrier Installation to S/N 4001-4171 excluding 4152

Aircraft Service Change (ASC) 065A “GIV-X Stage 4” Applicable to S/N 4001-4200

NOTE 7. Production Basis:

Airplanes produced at Bethpage, New York:

(a) Model G-1159 (G-II): Type Certificate A12EA (issued October 19, 1967), S/N 1 through 7, 9, 11, 12, 13, 15, 16, 17, 18, and 22. Production Certificate No. 23 (issued June 11, 1968), S/N 23, 25, 26, 28, 30, 34, 35, 37, and 40.

(b) Model G-1159 (G-II): Type Certificate A12EA (issued October 19, 1967), S/N 8, 10, 14, 19, 20, and 21. Production Certificate No. 507 (issued July 18, 1968), and 7SO (issued September 1, 1978 and reissued November 19, 1982); S/N 24, 27, 29, 31, 32, 33, 36, 38, 39, 41 through 256 (excluding 249 and 252) and 775.

(c) Model G-1159A (G-III): Production Certificate No. 7SO (issued September 1, 1978 and reissued September 22, 1980); S/N 249, 252, 300 through 495, and 875.

(d) Model G-1159B (G-IIIB), none. Modified Model G-1159 airplane.

(f) Model GV-SP (GV-SP): Production Certificate No. 7SO (issued September 1, 1978 and reissued August 14, 2003), S/N 5001 and subsequent.

(g) Model GIV-X (GIV-X): Production Certificate No. 7SO (issued September 1, 1978 and reissued November 16, 2004), S/N 4001 and subsequent.

NOTE 8. Alternate Aircraft Identifications:

The following provides approved alternate aircraft identification information assuming incorporation of the associated (listed) ASC:

Model G-IV, serial number 1500 & Subs, are eligible for identification as Model G-IV (G300) when modified in accordance with GAC Aircraft Service Change (ASC) 436.

Model G-IV, serial number 1500 & Subs, are eligible for identification as Model G-IV (G400) when modified in accordance with GAC Aircraft Service Change (ASC) 440.

Model GV-SP, serial number 5001 and subsequent are eligible for identification as Model GV-SP (G550) when modified in accordance with GAC Aircraft Service Change (ASC) 11.

Model GV-SP, serial number 5001 and subsequent are eligible for identification as Model GV-SP (G500) when modified in accordance with GAC Aircraft Service Change (ASC) 10.

Model GIV-X, serial number 4001 and subsequent are eligible for identification as Model GIV-X (G450) when modified in accordance with GAC Aircraft Service Change (ASC) 005.

Model GIV-X, serial number 4001 and subsequent are eligible for identification as Model GIV-X (G350) when modified in accordance with GAC Aircraft Service Change (ASC) 004.

NOTE 9. Cockpit Field of View:

The cockpit front windshield dimensions for the Models G-1159, G-1159A, G-1159B, G-IV, G-V, GV-SP, and GIV-X airplanes are critical for forward field of view certification requirements; therefore, no equipment should be installed on top of the glare shield without prior coordination with an FAA Aircraft Certification Office.

NOTE 10. Model G-1159A, S/N 249, 313 and 330:

NOTE 11. Systems Modifications:

The G-IV, GV, GV-SP and GIV-X models incorporate integrated avionics systems using software-based line replaceable units (LRU’s) which share a digital signal transmission bus. The avionics configuration of the G-IV, GV, GV-SP and GIV-X as delivered from production, is critical to the proper operation of the cockpit instrumentation system. Modification to the LRU software supplied with the G-IV, GV, GV-SP or GIV-X, replacement of an LRU with a different LRU, addition of new LRU, or alteration of an LRU interface could adversely affect the airworthiness of the certified product. Accordingly, no changes to the integrated avionics system should be made without coordination with the Aircraft Certification Office having jurisdiction over the modifier.

NOTE 12. Cockpit Modifications:

Any modification or changes in cockpit configuration which may affect aircrew workload, cockpit noise level or day/night lighting must be evaluated by an FAA Aircraft Certification Flight Test Pilot or Flight Standards Operation Inspector.
NOTE 13. Deleted (January 13, 1997)

NOTE 14. Use of Takeoff Thrust:
For Models G-IV, GV, GV-SP and GIV-X, use of takeoff thrust for more than five (5) minutes [not to exceed ten (10) minutes] is approved for use only in the event of an inoperative engine due to shutdown or failure.

NOTE 15. Information to Modifiers:
Information to modifiers on limitations which impact original certification requirements of the Gulfstream GV are contained in Gulfstream Report GV-GER-1242, Gulfstream V Interior Certification Requirements Document. Information to modifiers on limitations which impact original certification requirements of the Gulfstream GV-SP are contained in Gulfstream Report GVSP-GER-6044, Gulfstream GV-SP Interior Certification Requirements Document. Information to modifiers on limitations which impact original certification requirements of the Gulfstream GIV-X are contained in Gulfstream Report GIVX-GER-1619, GIV-X Interior Certification Requirements Document.

NOTE 16. G-II Aging Aircraft Program
As part of the G-II Aging Aircraft Program, an Airworthiness Limitations Section (ALS) is being added to the current G-II Maintenance Manual. In addition, a Supplemental Structural Inspection Document (SSID) is being developed in order to provide the corresponding inspection procedures and methods. The ALS and SSID are being developed to FAR 25.571 at Amendment 25-54, based on the damage tolerance requirements of AC91-56A. Through the damage tolerance requirements, the ALS and SSID will remove certain life limitations on previous safe life certified components. With the incorporation of the ALS and SSID, the G-II airframe Extended Service Goal (ESG) will be 40,000 flight hours and 36,000 flights.

NOTE 17. GIV Airworthiness Limitations:
As part of the MSG3 Program, an Airworthiness Limitations Section (ALS) has been added to the GIV Maintenance Manual for aircraft serial number 1400 and subsequent, and for all other GIV aircraft having incorporated ASC 416. This ALS has been developed to FAR 25.571 at Amendment 25-54, based on the damage tolerance requirements of AC91-56A. It is controlled by the FAA and cannot be changed by the aircraft operator. Through the damage tolerance requirements, the ALS removes certain life limitations on previous safe life certified components.

NOTE 18. Deleted (August 14, 2003)

NOTE 19. RVSM:
Per the approved Type Design, GV-SP S/N 5001 and subsequent (i.e., G550 and G500 model aircraft) are considered to be compliant with the Reduced Vertical Separation Minima (RVSM) technical requirements contained in FAA Document 91-RVSM; however, operational approval to fly in RVSM airspace must still be granted by the cognizant Flight Standards organization.

Per the approved Type Design, GIV-X S/N 4001 and subsequent (i.e., G450 and G350 model aircraft) are considered to be compliant with the Reduced Vertical Separation Minima (RVSM) technical requirements contained in FAA Document 91-RVSM; however, operational approval to fly in RVSM airspace must still be granted by the cognizant Flight Standards organization.

NOTE 20. Cockpit Video Display:
The avionics architecture of the GV-SP and GIV-X models includes a capability to display multiple, assorted video inputs on the cockpit display units positioned directly in front of the pilots. Because these displays affect crew workload, changes to the approved video input sources (including the addition of new video sources or capabilities) will require a specific FAA approval, including specific acknowledgement and concurrence from an FAA Aircraft Certification Office.
NOTE 21. **Direction Indicator Requirements:**

Gulfstream Models G-IV, GV, GV-SP, and GIV-X meet 14 CFR part 25.1303(a)(3) requirements for a direction indicator (non-stabilized magnetic compass) by installation of Standby Digital Reading Magnetic Indicator Systems through the following means:

- **G-IV** Standby Digital and Bearing Distance Indicator (DBDI) system driven by flux valve
- **GV** Standby Radio Magnetic Indicator (RMI) system driven by flux valve
- **GV-SP/GIV-X** Integrated Standby Instrument System (ISIS) and Electronic Bearing Distance Indicator (EBDI) system driven by magnetometer

NOTE 22. **Forward Observer’s Seat (Jump Seat)**

The Forward Observer’s Seat (Jump Seat) is approved for taxi, takeoff, and landing on the GV, GV-SP, and GIV-X models as part of Type Design. The Forward Observer’s Seat (Jump Seat) is approved for taxi, takeoff, and landing on the GII, GIII, and GIV if verified by the installing STC or other FAA approved data. In flight use of the jump seat in any Gulfstream model also requires that related articles, specifically an FAA approved shoulder harness and Oxygen system, are installed. In addition, GII S/N 1 through 208 and S/N 775 require ASC 226 be installed for jump seat approval.

NOTE 23. **APU Limitations**

For GIV-X series (G450/G350) airplane serial numbers 4147, 4151, and 4153 through 4171, the Gulfstream Airplane Flight Manual Supplements noted below must be attached to the G450 AFM dated 12 August 2004, or the G350 AFM dated 28 October 2004.

<table>
<thead>
<tr>
<th>S/N</th>
<th>AFMS #</th>
<th>S/N</th>
<th>AFMS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>4147</td>
<td>G450-2009-04-4147</td>
<td>4162</td>
<td>G450-2009-04-4162</td>
</tr>
<tr>
<td>4151</td>
<td>G450-2009-04-4151</td>
<td>4163</td>
<td>G450-2009-04-4163</td>
</tr>
<tr>
<td>4153</td>
<td>G450-2009-02 or G450-2009-04-4153</td>
<td>4164</td>
<td>G450-2009-04-4164</td>
</tr>
<tr>
<td>4155</td>
<td>G450-2009-02 or G450-2009-04-4155</td>
<td>4166</td>
<td>G450-2009-04-4166</td>
</tr>
<tr>
<td>4156</td>
<td>G450-2009-02 or G450-2009-04-4156</td>
<td>4167</td>
<td>G450-2009-04-4167</td>
</tr>
<tr>
<td>4157</td>
<td>G450-2009-02 or G450-2009-04-4157</td>
<td>4168</td>
<td>G450-2009-04-4168</td>
</tr>
<tr>
<td>4158</td>
<td>G450-2009-04-4158</td>
<td>4169</td>
<td>G450-2009-04-4169</td>
</tr>
<tr>
<td>4159</td>
<td>G450-2009-04-4159</td>
<td>4170</td>
<td>G450-2009-04-4170</td>
</tr>
<tr>
<td>4160</td>
<td>G450-2009-02 or G450-2009-04-4160</td>
<td>4171</td>
<td>G450-2009-04-4171</td>
</tr>
<tr>
<td>4161</td>
<td>G450-2009-04-4161</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For GV-SP series (G550/G500) airplane serial numbers 5205, 5218, 5220 through 5224, 5226 through 5244, and 5246 through 5249, the Gulfstream Airplane Flight Manual Supplements noted below must be attached to the G550 AFM dated 14 August 2003, or the G500 AFM dated 05 December 2003.
NOTE 24. Stage 4 Noise

Gulfstream model aircraft GIV, GIV-X, GV & GV-SP having installed the following Aircraft Service Changes (ASCs) are compliant to 14 CFR Part 36, through amendment 36-28, Stage 4 Noise requirements. Substantiating data is documented in Gulfstream reports GIV-GER-423, GAC-CR-4058, GIVX-GER-1642, GIVX-GER-7117 and GVSP-GER-5866.

GV-SP ASC 089 “Stage 4” Serial Number Effectivity 5001-5288
GIV-X ASC 064 “Stage 4” Serial Number Effectivity 4001-4200
GV ASC 197 “Stage 4” Serial Number Effectivity 501-693 including 699
GIV ASC 487 “Stage 4” Serial Number Effectivity 1000 - 1535

Gulfstream model aircraft GIV-X and GV-SP at production cut-in are compliant to 14 CFR Part 36, through amendment 36-28, Stage 4 Noise requirements. Substantiating data is documented in Gulfstream reports GIVX-GER-1642, GIVX-GER-7117 and GVSP-GER-5866.
GV-SP, “Stage 4” Serial Number Effectivity 5289 and subsequent.
GIV-X, “Stage 4” Serial Number Effectivity 4201 and subsequent.

<table>
<thead>
<tr>
<th>S/N</th>
<th>AFMS #</th>
<th>S/N</th>
<th>AFMS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5233</td>
<td>G550-2009-02 or G550-2009-05-5233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5234</td>
<td>G550-2009-02 or G550-2009-05-5234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>