TYPE CERTIFICATE DATA SHEET NO. T00021AT

This data sheet, which is part of Type Certificate No. T00021AT, prescribes conditions and limitations under which the product for which the type certificate was issued meets the airworthiness requirements of the Federal Aviation Regulations.

Type Certificate Holder: Gulfstream Aerospace Corporation
500 Gulfstream Road
Savannah, Georgia 31408

I. - GVII-G500 (Transport Category), Approved July 20, 2018

Engines Two - Pratt & Whitney Canada Corp. Turbofan Engine Model:
PW814GA (Engine Type Certificate No. E00093EN)

Fuel Fuel shall conform to the specification as listed. See the approved GVII-G500 Airplane Flight Manual (AFM) or GVII-G500 Aircraft Maintenance Manual (AMM) for additional information.

<table>
<thead>
<tr>
<th>Kerosene Type</th>
<th>American</th>
<th>British</th>
<th>Canadian</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>ASTM D 1655, Jet A</td>
<td>DEF. STAN. 91-91</td>
<td>CAN/CGSB-3.23</td>
</tr>
<tr>
<td></td>
<td>ASTM D 1655 Jet A-1</td>
<td>DEF. STAN. 91-87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIL-T-83133 (JP-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>CIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JP-5 Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
</tr>
<tr>
<td>British</td>
</tr>
<tr>
<td>French</td>
</tr>
</tbody>
</table>

For required use of anti-icing additives and emergency use of alternate fuel types, refer to the FAA-approved Airplane Flight Manual.
Engine Limits
See the approved GVII-G500 Airplane Flight Manual for engine ratings.

Auxiliary Power Unit (APU) Honeywell HGT400[G]
See the approved GVII-G500 Airplane Flight Manual for APU ratings.

Airspeed Limits (CAS) \(V_{MO}/M_{MO} = 340 \text{ KCAS} / 0.925 \text{ Mach} \)
For other airspeed limits, see the approved GVII-G500 Airplane Flight Manual

C.G. Range:
See the approved Airplane Flight Manual.

Empty Weight C.G. Range: None.

M.A.C. 161 in. (L.E. of M.A.C. = Fuselage Station 582.5)

Datum: For weight and balance purposes, the zero datum is 100 inches forward of the tip of the radome.

Leveling Means:
Longitudinal: Lugs at left nose wheel well door longeron STA 163.0 & 174.0.
Lateral: Lugs on rear face of bulkhead STA 148.5 in nose wheel well.
See GVII-G500 Aircraft Maintenance Manual for leveling procedure

Weight limits (lb)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TC Configuration</td>
<td>52,100</td>
<td>80,000</td>
<td>79,600</td>
<td>64,350</td>
</tr>
</tbody>
</table>

Minimum Crew 2 (Pilot and Co-Pilot)

Maximum Passengers 19 With approved cabin interior (See Note 4). Maximum passenger capacity is limited by emergency exit door requirements of 14 CFR §25.807(c).

0 For aircraft without an approved cabin interior (i.e., “green” aircraft as defined by Gulfstream drawing 72P0000000-001, GVII-G500 Aircraft Level Configuration Control Document, revision C or later FAA-approved revision).

Maximum Occupants 22 With approved cabin interior (See Note 4). Total reflects the maximum aircraft capacity of 19 passengers plus 3 crewmembers.

3 For aircraft without an approved cabin interior (i.e., “green” aircraft as defined by Gulfstream drawing 72P0000000-001, GVII-G500 Aircraft Level Configuration Control Document, revision C or later FAA-approved revision). Total represents 3 crewmembers and 0 passengers.

Oil Capacity: See GVII-G500 Aircraft Flight Manual

Maximum Operating Altitude: 51,000 feet

Control Surface Movements

To ensure proper operation of the airplane, the movement of the various control surfaces must be controlled by proper rigging of the flight control system. The airplane must be rigged according to the following FAA-approved data in the following GVII-G500 Aircraft Maintenance Manual sections:

<table>
<thead>
<tr>
<th>FCS System</th>
<th>FAA-Approved Gulfstream Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aileron Control</td>
<td>GAC500-A-27-10-03-00A-340A-A</td>
</tr>
<tr>
<td>Rudder Control</td>
<td>GAC500-A-27-20-02-00A-340A-A</td>
</tr>
<tr>
<td>Elevator Control</td>
<td>GAC500-A-27-30-02-00A-340A-A</td>
</tr>
<tr>
<td>Flap Control</td>
<td>GAC500-A-27-50-01-00A-273A-A</td>
</tr>
<tr>
<td></td>
<td>GAC500-A-27-50-02-00A-340A-A</td>
</tr>
<tr>
<td>Spoiler Control</td>
<td>GAC500-A-27-60-01-00A-273A-A</td>
</tr>
<tr>
<td></td>
<td>GAC500-A-27-60-02-00A-340A-A</td>
</tr>
</tbody>
</table>

Conditions:

System mode of operation
On Ground Stationary = True
Flap Position = 0° (unless otherwise specified)
Pitch Trim = 0°
Roll Trim = 0°
Yaw Trim = 0°

Maximum control surface travel:

<table>
<thead>
<tr>
<th>Control Surface</th>
<th>Maximum TEU/TEL (Deg.)</th>
<th>Maximum TED/TER (Deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aileron</td>
<td>-19.7 to -21.70</td>
<td>+12.20 to +14.20</td>
</tr>
<tr>
<td>Rudder</td>
<td>+25.70 to +27.70</td>
<td>-25.70 to -27.70</td>
</tr>
<tr>
<td>Elevator</td>
<td>-25.80 to -27.80</td>
<td>+13.90 to +15.90</td>
</tr>
<tr>
<td>Horizontal Stabilizer</td>
<td>+10.5 to +10.8</td>
<td>-0.5 to -0.8</td>
</tr>
<tr>
<td>(Acft Nose Up)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaps</td>
<td>0°</td>
<td>10.0 ± 1.0°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0 ± 1.0°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.0 ± 1.0°</td>
</tr>
<tr>
<td>Outboard Spoilers</td>
<td>+54.00 to +56.00</td>
<td>-1.00 to +1.00</td>
</tr>
<tr>
<td>(w/flaps @ 10°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midboard Spoilers</td>
<td>+54.00 to +56.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(w/flaps @ 10°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inboard Spoilers</td>
<td>+54.00 to +56.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(w/flaps @ 10°)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEU = Trailing Edge Up TED = Trailing Edge Down
TEL = Trailing Edge Left TER = Trailing Edge Right

Serial No. Eligible
S/N 72001 and subsequent

Other Operating Limitations
The aircraft must be operated in accordance with the latest FAA approved revision to the GVII-G500 Airplane Flight Manual, GAC-AC-GVII-G500-OPS-0001.

Certification Basis
14 CFR Part 25, Airworthiness Standards: Transport Category Airplanes, effective February 1, 1965 including Amendments 25-1 through 25-137, 25-143 for §25.975(a)(7) only, and 25-144 for §25.773(e) only.

Amendment 25-118 was not published and therefore has no applicability.

14 CFR Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes, effective September 10, 1990, including Amendments 34-1 through 34-5A.

14 CFR Part 36, Noise Standards: Aircraft Type Certification and Airworthiness Certification, effective December 1, 1969, including Amendment 36-1, Stage 5.

Compliance with Section 44715(e) of Title 49 U.S.C. (Noise Control Act of 1972).

The following optional design regulations have been complied with:

Ditching
The Model GVII-G500 has been shown to comply with the requirements for ditching: §§ 25.801, 25.563, 25.807(e), and 25.1585(a). When the operating rules require emergency ditching equipment, compliance with §§ 25.1411 and 25.1415 must be shown. Gulfstream Report GVII-GER-0187, entitled “Ditching Equipment System Requirements Document” provides an acceptable means for showing compliance with §§ 25.1411 and 25.1415.

Ice Protection
14 CFR § 25.1419

The following special conditions in accordance with 14 CFR part 21 apply to the Model GVII-G500:

<table>
<thead>
<tr>
<th>SC No.</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-585-SC</td>
<td>Limit Pilot Forces for Side Stick Controls</td>
</tr>
<tr>
<td>25-592-SC</td>
<td>Electronic Flight Control System: Control Surface Position Awareness</td>
</tr>
</tbody>
</table>
25-598-SC Limit Engine Torque Loads for Sudden Engine Stoppage
25-600-SC Automatic Speed Protection for Design Dive Speed
25-601-SC Side-Stick Controllers; Controllability and Maneuverability
25-613-SC Airplane Electronic System Security Protection from Unauthorized External Access
25-614-SC Pilot Compartment View Requirements with an Enhanced Flight Vision System
25-617-SC Design Roll Maneuver Requirement
25-618-SC Technical Criteria for Approving Side-Facing Seats
25-619-SC Isolation or Protection of Airplane Electrical-System Security from Unauthorized Internal Access
25-641-SC Electronic Flight Control System Mode Annunciation
25-662-SC Non-Rechargeable Lithium Battery Installations
25-691-SC Airbag Systems on Multiple-Place and Single-Place Side-Facing Seats
25-715-SC Operation Without Normal Electrical Power
25-732-SC Flight Envelope Protection - High Incidence Protection System

Exemptions from 14 CFR part 25 in accordance with 14 CFR part 11:

a) Exemption No. 13504, § 25.809(a), Overwing Viewing Means
b) Exemption No. 11610, § 25.813(e), Forward Vestibule and MED Acoustic Door
c) Exemption No. 17045, § 25.813(e), Mid-Cabin Pocket Doors
e) Partial Exemption No. 13582, § 25.1447(c)(1), High Landing Field Elevation
f) Exemption No. 17434, § 25.1711(a), EWIS Component Marking (Limited to 4 specific aircraft)
g) Time-Limited Exemption No. 17825, § 25.1309(b), Non-Rechargeable Lithium Battery Installations in Life Raft ELTs
h) Time-Limited Partial Exemption No. 107788, § 25.1191(b)(1), Inlet and Thrust Reverser Fastener Cap Sealant

Equivalent Safety Findings according to the provisions of 14 CFR part 21.21(b)(1) for the following subjects:
TC-01-2010-0024-F-1 § 25.255 Electronic Flight Control System: Out-of-Trim Characteristics

TC-01-2010-0024-A-5-GVI § 25.331 Checked Pitch Maneuver

TC-01-2010-0024-A-6-GVI § 25.341(b) Continuous Gust Design Criteria

TC-01-2010-0024-A-8-GVI § 25.415 Ground Gust

ST-05-2014-0004-C-8 § 25.562, SC 25-618-SC, Item 2(g) Side-Facing Seat ATD Submarining

TC-01-2010-0024-A-6 § 25.629(d)(9) Failure Criteria Considered Under the Aeroelastic Stability Requirements of § 25.629

TC-01-2010-0024-S-17-GVI § 25.671 Flight Control System Failure Criteria

TC-01-2010-0024-S-29 § 25.783(c)(1) Electrical Main Entry Door Pressurization Prevention Means
<table>
<thead>
<tr>
<th>TC-01-2010-0024-C-1-GVI</th>
<th>§ 25.807(a)(3), (g)(1)(2)(3), (i)(1)(2)</th>
<th>Emergency Exits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-01-2010-0024-C-1-GIV-X</td>
<td>§§ 25.811(d) and 25.812(b)</td>
<td>Emergency Exit Marker, Locator and Bulkhead/Divider Signs</td>
</tr>
<tr>
<td>TC-01-2010-0024-C-7-GVI</td>
<td>§ 25.813(c)(2)(ii)</td>
<td>Seat/Furnishing Encroachment into Overwing Emergency Exit Openings</td>
</tr>
<tr>
<td>TC-01-2010-0024-S-14</td>
<td>§ 25.831(g)</td>
<td>Acceptable High Temperature Physiological Environment During Failure Conditions</td>
</tr>
<tr>
<td>TC-01-2010-0024-S-11</td>
<td>§ 25.841(a), (b)(6)</td>
<td>Cabin Pressurization - High Field Elevation Takeoff and Landing Operations</td>
</tr>
<tr>
<td>TC-01-2010-0024-S-27</td>
<td>§§ 25.841(b)(1) and 25.843(b)(1)</td>
<td>Combined Aircraft Pressurization Outflow and Positive Pressure Differential Relief Valves</td>
</tr>
<tr>
<td>TC-01-2010-0024-C-10</td>
<td>§§ 25.853(a) and 25.855(d)</td>
<td>Use of Reduced Vertical Bunsen Burner Flammability Requirements for Interior Materials</td>
</tr>
<tr>
<td>TC-01-2010-0024-P-09</td>
<td>§ 25.901(c)(d)</td>
<td>APU Certification Requirements</td>
</tr>
<tr>
<td>TC-01-2010-0024-P-1-GIV-X</td>
<td>§ 25.933(a)(1)(ii)</td>
<td>Flight Critical Thrust Reverser</td>
</tr>
<tr>
<td>TC-01-2010-0024-P-07</td>
<td>§ 25.1145(a)</td>
<td>Ignition Switches</td>
</tr>
<tr>
<td>TC-01-2010-0024-P-1</td>
<td>§ 25.1155</td>
<td>Reverse Thrust Control and Indication</td>
</tr>
</tbody>
</table>
TC-01-2010-0024-P-15 § 25.1193(e)(3) Engine and APU Fire Protection

TC-01-2010-0024-P-03 § 25.1203(a) Turbine Engine Tailpipe Fire Detection

TC-01-2010-0024-S-1 §§ 25.1301(a)(4) and 25.1309 Equipment, Systems, and Installation Requirements: Use of ARAC Recommendations

TC-01-2010-0024-S-20 §§ 25.1303(a)(3), 25.1327 and 25.1547 Use of an Electric-Only Direction Indicator for Standby Instrumentation

TC-01-2010-0024-S-38-GVI § 25.1325(c)(1) Pitot-Static System Moisture Control

TC-01-2010-0024-F-2-GVI § 25.1517 Rough Air Speed Criteria

TC-01-2010-0024-S-26 § 25.1459(a)(2) Use of Inertial Reference System for Flight Data Recorder Vertical Acceleration Sensor Data

TC-01-2010-024-P-12 § 25.1549(a)(b)(c) Digital-Only Display of Engine Parameters

ADDITIONAL DESIGN REQUIREMENTS AND CONDITIONS:

The following design details or information must be maintained to ensure that an unsafe design condition is not present:

Fire Extinguishing Plumbing and Wiring Connections
The engine and APU fire extinguishing plumbing and electrical connections must be constructed, arranged and installed such that cross-connection is not possible during normal maintenance actions such as changing the fire extinguishing bottles or troubleshooting the system.

In-flight Engine Restart
The following design details or information must be maintained to ensure that an unsafe design condition is not present:
In-Flight All-Engines Restart:
1. A minimum restart capability after an all-engines-out scenario must be established under the following conditions using procedures provided in the airplane flight manual (AFM):
 a. During the take-off and initial climb-out portion of the flight, the airplane should have the capability for the flightcrew to restore engine power immediately following an all-engine-out scenario and when the fuel source to the engine is interrupted.
 b. During the high altitude portion of the flight at cruise speed and maximum altitude, the airplane should have the capability for the flightcrew to restart engines from a stabilized windmill speed prior to descending below an altitude of 15,000 feet, by showing either or both:
 1) All but one engine should be restarted and accelerated to produce maximum thrust/power, or
 2) The engine(s) should be restarted, and the necessary thrust/power achieved, to enable the airplane to maintain level flight.
 c. During flight at speeds greater than the minimum flaps-up “holding speed” and at altitudes below 20,000 feet, the airplane should have the capability for the flightcrew to restart engines from a stabilized windmill speed prior to descending 5000 feet from the initiation of the restart procedure and prior to exceeding an airspeed of 300 knots, by showing either or both:
 1) All but one engine should be restarted and accelerated to produce maximum continuous thrust/power, or
 2) The engine(s) should be restarted, and the necessary thrust/power achieved, to enable the airplane to maintain level flight.

Fuel Feed System Icing Threats
The aircraft/engine fuel feed system has been designed to prevent an accumulation of ice anywhere within the fuel tank and feed system from being released into the engine fuel system, and has been designed such that no loss of engine thrust occurs due to the release of any ice accumulation, anywhere within the airplane/engine operating envelope. Any change to the aircraft/engine fuel feed system must be assessed against the same criteria.

Engine Damage from Wing Ice Caused by Cold Soaked Fuel
The potential hazards associated with ice that may form on the wings due to cold soaked fuel have been addressed through an analysis of the basic aircraft design, plus an airplane flight manual (AFM) procedure specific to this concern. Any change to maximum landing weight, minimum zero fuel gross weight, or
maximum fuel load at landing will require a new analysis to show that the cold soaked fuel cannot come in contact with the upper wing surface at maximum landing weight and thereby cause an undetected ice accumulation. Additionally, the AFM pre-flight inspection procedure (with inspection criteria based on fuel temperature and observed ambient weather conditions) must be retained such that any ice accumulation on the upper wing surface after refueling will be detected and addressed.
Engine Nacelle Damage Caused by Burst Bleed Duct
The GVII-G500 engine nacelles have been designed and tested to demonstrate structural integrity/capability to withstand the effects of heat impingement from a leaking bleed air duct. A crew alert has been implemented to warn of slow, insidious leakage and procedures are prescribed for the flightcrew to take action in the event of a detected leak, to prevent the damage to and loss of the nacelle components, and potential damage to critical surfaces of the airplane. Changes to the engine nacelle or to the flightcrew alert related to bleed duct leakage must be substantiated against the same criteria.

Yaw Oscillations
Service experience has shown that an unsafe rudder system design feature may contribute to a yaw related aircraft-pilot coupling (APC) event that could potentially lead to a structural failure of the vertical stabilizer. If this feature exists, excessive rudder pedal inputs may drive loads beyond the ultimate design. The following criteria for rudder performance must be demonstrated to ensure a safe rudder control system design per §§ 25.143(a), 25.143(b) and 25.671(a), and that it does not have the unsafe characteristics described above:
1. The rudder control system design characteristics, including pedal sensitivity, breakout forces, lateral accelerations as a function of pedal force, the ability to adequately modulate rudder control throughout the flight envelope, and displacement and harmony with other flight controls provide safe handling qualities throughout the flight envelope.
2. The airplane is adequately protected from the adverse effects of inappropriate rudder inputs, including the potential for loss of control, APC / PIO, or exceeding the airplane’s structural design envelope.

Type Certificate Information
Application for the type certificate was first dated October 28, 2010, followed by reapplication on June 30, 2013 and an extension made on April 25, 2018 changing the effective application date to September 30, 2013. Type Certificate T00021AT was obtained under delegation of the Gulfstream Organization Designation Authorization (ODA).

Production Basis
Production Certificate No. 7SO, issued September 1, 1978, see Note 15.

Equipment
The basic required equipment as prescribed in the applicable airworthiness regulations (see Certification Basis) must be installed in the aircraft for certification. See the Illustrated Parts Catalog (IPC) for an approved equipment listing. In addition, the following items of equipment are required:
(a) FAA Approved Airplane Flight Manual.
NOTES:

NOTE 1. **Weight and Balance:**

A current weight and balance report, including a list of equipment included in certificated empty weight, and loading instructions when necessary, must be provided for each aircraft at the time of original certification. The certificated basic empty weight and corresponding center of gravity location must include that total engine oil, hydraulic fluid and unusable fuel. Loading of the aircraft must be accomplished in a manner that always maintains the center of gravity within the specified limits considering crew and occupant movements as well as fuel consumption and transfer.

NOTE 2. **Placards:**

Airplane operation must be in accordance with the approved Airplane Flight Manual. All placards required in the AFM must be installed in the appropriate locations.

NOTE 3. **Instructions for Continued Airworthiness:**

The Instructions for Continued Airworthiness are contained in the Aircraft Maintenance Manual, which includes the associated Maintenance Review Board Report. This document meets the requirements of 14 CFR §§ 25.1529, and part 25 Appendix H (Sections H25.2, H25.3 and H25.4 only), including information on description, operation, maintenance (troubleshooting, removal/replacement, cleaning, inspection, etc.), and scheduling, as well as an Airworthiness Limitations Section (ALS). See Note 10 for additional information regarding airworthiness limitations.

NOTE 4. **Aircraft Interior Configurations:**

Type Certificate T00021AT is for a “green” aircraft configuration only, as defined by Gulfstream drawing 72P0000000.001, GVII-G500 Aircraft Level Configuration Control Document, Revision D, or later FAA Approved revision. Cabin interior installations (including passenger seating configurations) must receive separate FAA approval, and are required prior to any operation with passengers. See Note 9 for additional information regarding interior certification requirements.

NOTE 5. **Aircraft Service Changes:**

None applicable at time of initial Type Certification.

NOTE 6. **Cockpit Field of View:**

The cockpit front windshield dimensions for the GVII model airplanes are critical for forward field of view certification requirements; therefore, no equipment should be installed on top of the glare shield without coordination with the FAA Certificate Management Aircraft Certification Office (CMACO) for the Gulfstream GVII-G500.
NOTE 7. Cockpit Video Display:

The avionics architecture of the Gulfstream Model GVII-G500 includes a capability to display multiple, assorted video inputs on the cockpit display units positioned directly in front of the pilots. Because these displays affect crew workload, changes to the approved video input sources (including the addition of new video sources or capabilities) will require a specific FAA approval, including specific acknowledgement and concurrence from an FAA CMACO for the GVII-G500.

NOTE 8. Cockpit Modifications:

Any modification or changes in cockpit configuration which may affect aircrew workload, cockpit noise level or day/night lighting must be evaluated in coordination with the FAA CMACO for the GVII-G500.

NOTE 9. Systems Modifications:

The GVII model airplanes incorporate integrated avionics and Flight Control systems using software-based line replaceable units (LRU) that share a digital signal transmission bus. The avionics configuration of the GVII as delivered from production is critical to the proper operation of the cockpit instrumentation system. Modification to the LRU software supplied with the GVII, replacement of an LRU with a different LRU, addition of new LRU, or alteration of an LRU interface could adversely affect the airworthiness of the certified product. Accordingly, no changes to the integrated avionics system should be made without coordination with the FAA CMACO for the GVII-G500.

NOTE 10. Information to Modifiers:

Information to modifiers on limitations which impact original certification requirements on the Gulfstream GVII-G500 are contained in Gulfstream report GVII-GER-0149, GVII-G500 Interior Certification Requirements Document. As agreed by Gulfstream and the FAA, a preliminary version of this document has been used for aircraft outfitting prior to issuance of the TC, with a final version to be FAA approved and adopted for use no more than 90 days after TC issuance. Once approved by the FAA, any changes to, or deviations from GVII-GER-0149 must be coordinated with the FAA Certification Management Office for the GVII-G500 TC. GVII-GER-0149 provides guidance on design limitations and regulatory requirements for a GVII-G500 aircraft interior installation, but does not authorize any such installation. A separate FAA approval such as a supplemental type certificate (STC) or amended type certificate (ATC) is required to approve the design and installation of a GVII-G500 interior.

Exterior emergency exit lighting during low light ambient conditions – the level of illumination exhibited during certification ground testing exceeds the requirements of § 25.812(g). Any changes to the exterior emergency exit lighting require coordination with the FAA Certificate Management Office for the GVII-G500 TC, and separate compliance activities will be necessary per Exemption No. 13504 for § 25.809(a).
NOTE 11. **GVII-G500 Airworthiness Limitations:**

The replacement times, inspection intervals, related inspection procedures, and design configuration control limitations required by 14 CFR §§ 25.571, 25.981, 25.1529 and Appendix H.25.4 are contained in the “Airworthiness Limitation Section” (ALS) located in the Gulfstream Aircraft Maintenance Manual, Chapter 5, Section 05-10-10. The “Limit of Validity” required by 14 CFR § 25.571(a)(3), Amdt. 25-132 is also included in the ALS. The times and procedures listed in the ALS cannot be altered without FAA Engineering approval. Unless an Airworthiness Directive is issued, the appropriate ALS revision level is determined based on the issuance of the standard airworthiness certificate, predicated on this TC, and the applicable operating and maintenance regulations, such as 14 CFR §§ 91.403 or 43.16.

NOTE 12. **RVSM:**

Per the approved Type Design, the Gulfstream Model GVII-G500 S/N 72001 and subsequent has been approved to operate in “Reduced Vertical Separation Minimum” (RVSM) airspace. Continued airworthiness and operational approval aspects of RVSM must be constructed according to Advisory Circular (AC) 91-85 “Authorization of Aircraft and Operators for Flight in Reduced Vertical Separation Minimum Airspace.”

NOTE 13. **Personal Electronic Devices (PEDs):**

The GVII-G500 is a PED tolerant aircraft and compliance with PS-ANM-25-13 and sections 5.2 and 5.3 of DO-307A has been demonstrated; however, operators must establish compliance with 14 CFR 91.21, 121.306, 135.144 requirements. Any changes to aircraft doors, windows and other apertures, interior furnishings, or antenna/receiver locations can affect the spurious emissions tolerance and must be assessed per section 8.34 of the GVII-G500 Interior Certification Requirements Document (GVII-GER-0149).

NOTE 14. **Direction Indicator Requirements:**

The Gulfstream Model GVII-G500 meets 14 CFR §25.1303(a)(3) requirements for a direction indicator (non-stabilized magnetic compass) by installation of two independent standby instruments through the following means:

The GVII-G500 independent standby instruments are driven by magnetometers and micro-electro mechanical system gyros.

Any change to the standby instruments or related equipment will require coordination with the FAA CMACO for the GVII-G500 and a separate equivalent safety finding for §§ 25.1303(a)(3), 25.1327 and 25.1547.
NOTE 15. Production Basis:

The Production Limitation Record (PLR) for Production Certificate 7SO was revised on July 20, 2018, to include the GVII-G500. Gulfstream is authorized to issue airworthiness certificates under the Organization Designation Authorization (ODA) Procedures of 14 CFR part 183, subpart D, and FAA Order 8100.15. All airplanes were produced under the Production Certificate.

NOTE 16. Other Operating Limitations:

a) The FAA pilot type rating has not been determined. No GVII-G500 pilot certificates may be issued until this is accomplished.
b) Operational suitability under 14 CFR parts 91, 125 and 135 has not been evaluated. This aircraft may not be operated under those regulations until this evaluation has been accomplished.